Institute of Mathematics and Information Technologies, Volgograd State University, Universitetskiy Prosp., 100, 400062 Volgograd, Russia.
Int J Mol Sci. 2022 Dec 13;23(24):15793. doi: 10.3390/ijms232415793.
Many specific features of ultrafast electron transfer (ET) reactions in macromolecular compounds can be attributed to nonequilibrium configurations of intramolecular vibrational degrees of freedom and the environment. In photoinduced ET, nonequilibrium nuclear configurations are often produced at the stage of optical excitation, but they can also be the result of electron tunneling itself, i.e., fast redistribution of charges within the macromolecule. A consistent theoretical description of ultrafast ET requires an explicit consideration of the nuclear subsystem, including its evolution between electron jumps. In this paper, the effect of the multi-timescale nuclear reorganization on ET transitions in macromolecular compounds is studied, and a general theory of ultrafast ET in non-Debye polar environments with a multi-component relaxation function is developed. Particular attention is paid to designing the multidimensional space of nonequilibrium nuclear configurations, as well as constructing the diabatic free energy surfaces for the ET states. The reorganization energies of individual ET transitions, the equilibrium energies of ET states, and the relaxation properties of the environment are used as input data for the theory. The effect of the system-environment interaction on the ET kinetics is discussed, and mechanisms for enhancing the efficiency of charge separation in macromolecular compounds are analyzed.
许多大分子化合物中超快电子转移 (ET) 反应的特定特征可以归因于分子内振动自由度和环境的非平衡构型。在光诱导 ET 中,非平衡核构型通常在光激发阶段产生,但也可以是电子隧穿本身的结果,即大分子内电荷的快速重新分布。对超快 ET 的一致理论描述需要明确考虑核子子系统,包括电子跃迁之间的演化。在本文中,研究了多时间尺度核重组对大分子化合物中 ET 跃迁的影响,并开发了具有多组分弛豫函数的非德拜极性环境中超快 ET 的一般理论。特别关注设计非平衡核构型的多维空间,以及构建 ET 态的绝热自由能表面。个别 ET 跃迁的重组能、ET 态的平衡能以及环境的弛豫特性被用作理论的输入数据。讨论了体系-环境相互作用对 ET 动力学的影响,并分析了提高大分子化合物中电荷分离效率的机制。