Suppr超能文献

从 UreA 转运蛋白的中间结构状态中识别底物的特性。

Substrate Recognition Properties from an Intermediate Structural State of the UreA Transporter.

机构信息

Sección Bioquímica, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.

Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay.

出版信息

Int J Mol Sci. 2022 Dec 16;23(24):16039. doi: 10.3390/ijms232416039.

Abstract

Through a combination of comparative modeling, site-directed and classical random mutagenesis approaches, we previously identified critical residues for binding, recognition, and translocation of urea, and its inhibition by 2-thiourea and acetamide in the urea transporter, UreA. To deepen the structural characterization of UreA, we employed the artificial intelligence (AI) based AlphaFold2 (AF2) program. In this analysis, the resulting AF2 models lacked inward- and outward-facing cavities, suggesting a structural intermediate state of UreA. Moreover, the orientation of the W82, W84, N279, and T282 side chains showed a large variability, which in the case of W82 and W84, may operate as a gating mechanism in the ligand pathway. To test this hypothesis non-conservative and conservative substitutions of these amino acids were introduced, and binding and transport assessed for urea and its toxic analogue 2-thiourea, as well as binding of the structural analogue acetamide. As a result, residues W82, W84, N279, and T282 were implicated in substrate identification, selection, and translocation. Using molecular docking with Autodock Vina with flexible side chains, we corroborated the AF2 theoretical intermediate model, showing a remarkable correlation between docking scores and experimental affinities determined in wild-type and UreA mutants. The combination of AI-based modeling with classical docking, validated by comprehensive mutational analysis at the binding region, would suggest an unforeseen option to determine structural level details on a challenging family of proteins.

摘要

通过比较建模、定点和经典随机诱变方法的组合,我们之前确定了脲、2-硫脲和乙酰胺在脲转运体 UreA 中结合、识别和转运的关键残基及其抑制作用。为了深入研究 UreA 的结构特征,我们使用了基于人工智能 (AI) 的 AlphaFold2 (AF2) 程序。在该分析中,得到的 AF2 模型缺乏内向和外向腔,表明 UreA 处于结构中间状态。此外,W82、W84、N279 和 T282 侧链的取向显示出很大的可变性,在 W82 和 W84 的情况下,可能作为配体途径中的门控机制。为了验证这一假设,我们引入了这些氨基酸的非保守和保守取代,并评估了脲及其毒性类似物 2-硫脲以及结构类似物乙酰胺的结合和转运。结果表明,残基 W82、W84、N279 和 T282 参与了底物的识别、选择和转运。使用 Autodock Vina 进行带柔性侧链的分子对接,我们验证了 AF2 的理论中间模型,对接得分与野生型和 UreA 突变体中实验亲和力之间显示出显著相关性。基于 AI 的建模与经典对接的结合,通过结合区域的全面突变分析进行验证,为确定具有挑战性的蛋白质家族的结构水平细节提供了一个意想不到的选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49dc/9783183/82f9109b6cad/ijms-23-16039-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验