Suppr超能文献

基于分段读出与单次激发回波平面成像的直方图分析对比鉴别乳腺腔内线与腔外乳腺癌。

Histogram analysis comparison of readout-segmented and single-shot echo-planar imaging for differentiating luminal from non-luminal breast cancer.

机构信息

Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.

Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.

出版信息

Sci Rep. 2024 May 27;14(1):12135. doi: 10.1038/s41598-024-62514-0.

Abstract

To compare diffusion-kurtosis imaging (DKI) and diffusion-weighted imaging (DWI) parameters of single-shot echo-planar imaging (ss-EPI) and readout-segmented echo-planar imaging (rs-EPI) in the differentiation of luminal vs. non-luminal breast cancer using histogram analysis. One hundred and sixty women with 111 luminal and 49 non-luminal breast lesions were enrolled in this study. All patients underwent ss-EPI and rs-EPI sequences on a 3.0T scanner. Histogram metrics were derived from mean kurtosis (MK), mean diffusion (MD) and the apparent diffusion coefficient (ADC) maps of two DWI sequences respectively. Student's t test or Mann-Whitney U test was performed for differentiating luminal subtype from non-luminal subtype. The ROC curves were plotted for evaluating the diagnostic performances of significant histogram metrics in differentiating luminal from non-luminal BC. The histogram metrics MK, MK, MK of luminal BC were significantly higher than those of non-luminal BC for both two DWI sequences (all P<0.05). Histogram metrics from rs-EPI sequence had better diagnostic performance in differentiating luminal from non-Luminal breast cancer compared to those from ss-EPI sequence. MK derived from rs-EPI sequence was the most valuable single metric (AUC, 0.891; sensitivity, 78.4%; specificity, 87.8%) for differentiating luminal from non-luminal BC among all the histogram metrics. Histogram metrics of MK derived from rs-EPI yielded better diagnostic performance for distinguishing luminal from non-luminal BC than that from ss-EPI. MK was the most valuable metric among all the histogram metrics.

摘要

采用直方图分析比较单次激发回波平面成像(ss-EPI)和读出分段回波平面成像(rs-EPI)扩散峰度成像(DKI)和扩散加权成像(DWI)参数在区分腔内线和非腔内线乳腺癌中的作用。本研究纳入 160 例女性,111 例腔内线乳腺癌和 49 例非腔内线乳腺癌。所有患者均在 3.0T 扫描仪上进行 ss-EPI 和 rs-EPI 序列检查。从两个 DWI 序列的平均峰度(MK)、平均扩散(MD)和表观扩散系数(ADC)图中提取直方图指标。采用 Student's t 检验或 Mann-Whitney U 检验区分腔内线和非腔内线乳腺癌。绘制 ROC 曲线评估有统计学意义的直方图指标在区分腔内线和非腔内线乳腺癌中的诊断效能。对于两种 DWI 序列,腔内线乳腺癌的 MK、MK、MK 直方图指标均显著高于非腔内线乳腺癌(均 P<0.05)。rs-EPI 序列的直方图指标在区分腔内线和非腔内线乳腺癌方面比 ss-EPI 序列的具有更好的诊断性能。rs-EPI 序列衍生的 MK 是区分腔内线和非腔内线乳腺癌的最有价值的单一指标(AUC:0.891;敏感性:78.4%;特异性:87.8%)。与 ss-EPI 相比,rs-EPI 序列衍生的 MK 直方图指标在区分腔内线和非腔内线乳腺癌方面具有更好的诊断性能。MK 是所有直方图指标中最有价值的指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c11b/11130195/4dc6fee71151/41598_2024_62514_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验