Wang Lulu
Biomedical Device Innovation Center, Shenzhen Technology University, Shenzhen 518118, China.
Micromachines (Basel). 2022 Nov 23;13(12):2049. doi: 10.3390/mi13122049.
Holographic microwave imaging (HMI) has been proposed for early breast cancer diagnosis. Automatically classifying benign and malignant tumors in microwave images is challenging. Convolutional neural networks (CNN) have demonstrated excellent image classification and tumor detection performance. This study investigates the feasibility of using the CNN architecture to identify and classify HMI images. A modified AlexNet with transfer learning was investigated to automatically identify, classify, and quantify four and five different HMI breast images. Various pre-trained networks, including ResNet18, GoogLeNet, ResNet101, VGG19, ResNet50, DenseNet201, SqueezeNet, Inception v3, AlexNet, and Inception-ResNet-v2, were investigated to evaluate the proposed network. The proposed network achieved high classification accuracy using small training datasets (966 images) and fast training times.
全息微波成像(HMI)已被提出用于早期乳腺癌诊断。在微波图像中自动区分良性和恶性肿瘤具有挑战性。卷积神经网络(CNN)已展现出出色的图像分类和肿瘤检测性能。本研究探讨了使用CNN架构对HMI图像进行识别和分类的可行性。研究了一种采用迁移学习的改进型AlexNet,以自动识别、分类和量化四种及五种不同的HMI乳腺图像。研究了各种预训练网络,包括ResNet18、GoogLeNet、ResNet101、VGG19、ResNet50、DenseNet201、SqueezeNet、Inception v3、AlexNet和Inception-ResNet-v2,以评估所提出的网络。所提出的网络使用小型训练数据集(966幅图像)实现了较高的分类准确率,且训练时间较短。