Suppr超能文献

使用卷积神经网络的全息微波图像分类

Holographic Microwave Image Classification Using a Convolutional Neural Network.

作者信息

Wang Lulu

机构信息

Biomedical Device Innovation Center, Shenzhen Technology University, Shenzhen 518118, China.

出版信息

Micromachines (Basel). 2022 Nov 23;13(12):2049. doi: 10.3390/mi13122049.

Abstract

Holographic microwave imaging (HMI) has been proposed for early breast cancer diagnosis. Automatically classifying benign and malignant tumors in microwave images is challenging. Convolutional neural networks (CNN) have demonstrated excellent image classification and tumor detection performance. This study investigates the feasibility of using the CNN architecture to identify and classify HMI images. A modified AlexNet with transfer learning was investigated to automatically identify, classify, and quantify four and five different HMI breast images. Various pre-trained networks, including ResNet18, GoogLeNet, ResNet101, VGG19, ResNet50, DenseNet201, SqueezeNet, Inception v3, AlexNet, and Inception-ResNet-v2, were investigated to evaluate the proposed network. The proposed network achieved high classification accuracy using small training datasets (966 images) and fast training times.

摘要

全息微波成像(HMI)已被提出用于早期乳腺癌诊断。在微波图像中自动区分良性和恶性肿瘤具有挑战性。卷积神经网络(CNN)已展现出出色的图像分类和肿瘤检测性能。本研究探讨了使用CNN架构对HMI图像进行识别和分类的可行性。研究了一种采用迁移学习的改进型AlexNet,以自动识别、分类和量化四种及五种不同的HMI乳腺图像。研究了各种预训练网络,包括ResNet18、GoogLeNet、ResNet101、VGG19、ResNet50、DenseNet201、SqueezeNet、Inception v3、AlexNet和Inception-ResNet-v2,以评估所提出的网络。所提出的网络使用小型训练数据集(966幅图像)实现了较高的分类准确率,且训练时间较短。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e60/9783834/acdccaa7ed6d/micromachines-13-02049-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验