Suppr超能文献

用于内容可寻址存储器的铁电器件。

Ferroelectric Devices for Content-Addressable Memory.

作者信息

Tarkov Mikhail, Tikhonenko Fedor, Popov Vladimir, Antonov Valentin, Miakonkikh Andrey, Rudenko Konstantin

机构信息

Rzhanov Institute of Semiconductor Physics SB RAS, 630090 Novosibirsk, Russia.

Valiev Institute of Physics and Technology RAS, 117218 Moscow, Russia.

出版信息

Nanomaterials (Basel). 2022 Dec 19;12(24):4488. doi: 10.3390/nano12244488.

Abstract

In-memory computing is an attractive solution for reducing power consumption and memory access latency cost by performing certain computations directly in memory without reading operands and sending them to arithmetic logic units. Content-addressable memory (CAM) is an ideal way to smooth out the distinction between storage and processing, since each memory cell is a processing unit. CAM compares the search input with a table of stored data and returns the matched data address. The issues of constructing binary and ternary content-addressable memory (CAM and TCAM) based on ferroelectric devices are considered. A review of ferroelectric materials and devices is carried out, including on ferroelectric transistors (FeFET), ferroelectric tunnel diodes (FTJ), and ferroelectric memristors.

摘要

内存计算是一种颇具吸引力的解决方案,可通过直接在内存中执行某些计算,而无需读取操作数并将其发送到算术逻辑单元,从而降低功耗和内存访问延迟成本。内容可寻址存储器(CAM)是消除存储和处理之间差异的理想方式,因为每个存储单元都是一个处理单元。CAM将搜索输入与存储数据的表格进行比较,并返回匹配的数据地址。本文考虑了基于铁电器件构建二进制和三进制内容可寻址存储器(CAM和TCAM)的问题。对铁电材料和器件进行了综述,包括铁电晶体管(FeFET)、铁电隧道二极管(FTJ)和铁电忆阻器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1e2/9785747/ca45557145f6/nanomaterials-12-04488-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验