Suppr超能文献

基于CT扫描图像利用扩展卷积神经网络与循环神经网络相结合的技术预测奥密克戎病毒

Prediction of Omicron Virus Using Combined Extended Convolutional and Recurrent Neural Networks Technique on CT-Scan Images.

作者信息

Gupta Anand Kumar, Srinivasulu Asadi, Hiran Kamal Kant, Sreenivasulu Goddindla, Rajeyyagari Sivaram, Subramanyam Madhusudhana

机构信息

Data Science Research Laboratory, BlueCrest University College, Monrovia, Liberia.

Symbiosis University of Applied Sciences, Indore, India.

出版信息

Interdiscip Perspect Infect Dis. 2022 Nov 28;2022:1525615. doi: 10.1155/2022/1525615. eCollection 2022.

Abstract

COVID-19 has sparked a global pandemic, with a variety of inflamed instances and deaths increasing on an everyday basis. Researchers are actively increasing and improving distinct mathematical and ML algorithms to forecast the infection. The prediction and detection of the Omicron variant of COVID-19 brought new issues for the health fraternity due to its ubiquity in human beings. In this research work, two learning algorithms, namely, deep learning (DL) and machine learning (ML), were developed to forecast the Omicron virus infections. Automatic disease prediction and detection have become crucial issues in medical science due to rapid population growth. In this research study, a combined Extended CNN-RNN research model was developed on a chest CT-scan image dataset to predict the number of +ve and -ve cases of Omicron virus infections. The proposed research model was evaluated and compared against the existing system utilizing a dataset of 16,733-sample training and testing CT-scan images collected from the Kaggle repository. This research article aims to introduce a combined ML and DL technique based on the combination of an Extended Convolutional Neural Network (ECNN) and an Extended Recurrent Neural Network (ERNN) to diagnose and predict Omicron virus-infected cases automatically using chest CT-scan images. To overcome the drawbacks of the existing system, this research proposes a combined research model that is ECNN-ERNN, where ECNN is used for the extraction of deep features and ERNN is used for exploration using extracted features. A dataset of 16,733 Omicron computer tomography images was used as a pilot assessment for this proposed prototype. The investigational experiment results show that the projected prototype provides 97.50% accuracy, 98.10% specificity, 98.80% of AUC, and 97.70% of 1-score. To the last, the study outlines the advantages being offered by the proposed model with respect to other existing models by comparing different parameters of validation such as accuracy, error rate, data size, time complexity, and execution time.

摘要

新冠疫情引发了全球大流行,每天出现的各类感染病例和死亡人数都在增加。研究人员正在积极开发和改进不同的数学和机器学习算法来预测感染情况。由于新冠病毒奥密克戎变异株在人群中广泛存在,其预测和检测给医学界带来了新问题。在这项研究工作中,开发了两种学习算法,即深度学习(DL)和机器学习(ML),用于预测奥密克戎病毒感染情况。由于人口快速增长,疾病的自动预测和检测已成为医学领域的关键问题。在本研究中,基于胸部CT扫描图像数据集开发了一种组合的扩展卷积神经网络-循环神经网络(Extended CNN-RNN)研究模型,以预测奥密克戎病毒感染的阳性和阴性病例数量。利用从Kaggle库收集的16733个样本的训练和测试CT扫描图像数据集,对所提出的研究模型进行了评估,并与现有系统进行了比较。本文旨在介绍一种基于扩展卷积神经网络(ECNN)和扩展循环神经网络(ERNN)相结合的机器学习和深度学习组合技术,用于使用胸部CT扫描图像自动诊断和预测奥密克戎病毒感染病例。为克服现有系统的缺点,本研究提出了一种组合研究模型ECNN-ERNN,其中ECNN用于提取深度特征,ERNN用于利用提取的特征进行探索。使用16733张奥密克戎计算机断层扫描图像数据集对该原型进行了初步评估。研究实验结果表明,所设计的原型的准确率为97.50%,特异性为98.10%,曲线下面积(AUC)为98.80%,F1分数为97.70%。最后,通过比较不同的验证参数,如准确率、错误率、数据大小、时间复杂度和执行时间,该研究概述了所提出模型相对于其他现有模型的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验