Suppr超能文献

基于序列尖峰的卷积神经网络预测 SARS-CoV-2 奥密克戎变异株的高人类适应性。

Convolutional Neural Networks Based on Sequential Spike Predict the High Human Adaptation of SARS-CoV-2 Omicron Variants.

机构信息

State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Milltary Medical Sciences, Beijing 100071, China.

出版信息

Viruses. 2022 May 17;14(5):1072. doi: 10.3390/v14051072.

Abstract

The COVID-19 pandemic has frequently produced more highly transmissible SARS-CoV-2 variants, such as Omicron, which has produced sublineages. It is a challenge to tell apart high-risk Omicron sublineages and other lineages of SARS-CoV-2 variants. We aimed to build a fine-grained deep learning (DL) model to assess SARS-CoV-2 transmissibility, updating our former coarse-grained model, with the training/validating data of early-stage SARS-CoV-2 variants and based on sequential Spike samples. Sequential amino acid (AA) frequency was decomposed into serially and slidingly windowed fragments in Spike. Unsupervised machine learning approaches were performed to observe the distribution in sequential AA frequency and then a supervised Convolutional Neural Network (CNN) was built with three adaptation labels to predict the human adaptation of Omicron variants in sublineages. Results indicated clear inter-lineage separation and intra-lineage clustering for SARS-CoV-2 variants in the decomposed sequential AAs. Accurate classification by the predictor was validated for the variants with different adaptations. Higher adaptation for the BA.2 sublineage and middle-level adaptation for the BA.1/BA.1.1 sublineages were predicted for Omicron variants. Summarily, the Omicron BA.2 sublineage is more adaptive than BA.1/BA.1.1 and has spread more rapidly, particularly in Europe. The fine-grained adaptation DL model works well for the timely assessment of the transmissibility of SARS-CoV-2 variants, facilitating the control of emerging SARS-CoV-2 variants.

摘要

新冠疫情频繁产生了传播性更强的 SARS-CoV-2 变体,如奥密克戎,其产生了亚谱系。区分高风险奥密克戎亚谱系和其他 SARS-CoV-2 变体谱系是一项挑战。我们旨在构建一个细粒度的深度学习 (DL) 模型来评估 SARS-CoV-2 的传播性,该模型以早期 SARS-CoV-2 变体的训练/验证数据为基础,并基于 Spike 的连续样本,对我们之前的粗粒度模型进行更新。连续氨基酸 (AA) 频率在 Spike 中被分解为连续和滑动窗口片段。使用无监督机器学习方法观察连续 AA 频率的分布,然后构建一个带有三个适应标签的监督卷积神经网络 (CNN),以预测奥密克戎亚谱系中变体的人类适应性。结果表明,在分解的连续 AA 中,SARS-CoV-2 变体之间存在明显的谱系间分离和谱系内聚类。对具有不同适应性的变体进行了准确的分类验证。对奥密克戎变体预测 BA.2 亚谱系的适应性更高,BA.1/BA.1.1 亚谱系的适应性中等。总之,奥密克戎 BA.2 亚谱系比 BA.1/BA.1.1 更具适应性,传播速度更快,尤其是在欧洲。细粒度的适应性 DL 模型可很好地评估 SARS-CoV-2 变体的传播性,有助于控制新出现的 SARS-CoV-2 变体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17fc/9147419/295e664fa5bc/viruses-14-01072-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验