Department of Radiology and Biomedical Imaging, University of California, 1700, 4th Street, San Francisco, CA, 94158, USA.
Sci Rep. 2022 Dec 23;12(1):22208. doi: 10.1038/s41598-022-26266-z.
MRI T mapping sequences quantitatively assess tissue health and depict early degenerative changes in musculoskeletal (MSK) tissues like cartilage and intervertebral discs (IVDs) but require long acquisition times. In MSK imaging, small features in cartilage and IVDs are crucial for diagnoses and must be preserved when reconstructing accelerated data. To these ends, we propose region of interest-specific postprocessing of accelerated acquisitions: a recurrent UNet deep learning architecture that provides T maps in knee cartilage, hip cartilage, and lumbar spine IVDs from accelerated T-prepared snapshot gradient-echo acquisitions, optimizing for cartilage and IVD performance with a multi-component loss function that most heavily penalizes errors in those regions. Quantification errors in knee and hip cartilage were under 10% and 9% from acceleration factors R = 2 through 10, respectively, with bias for both under 3 ms for most of R = 2 through 12. In IVDs, mean quantification errors were under 12% from R = 2 through 6. A Gray Level Co-Occurrence Matrix-based scheme showed knee and hip pipelines outperformed state-of-the-art models, retaining smooth textures for most R and sharper ones through moderate R. Our methodology yields robust T maps while offering new approaches for optimizing and evaluating reconstruction algorithms to facilitate better preservation of small, clinically relevant features.
MRI T 映射序列可定量评估组织健康状况,并描绘出软骨和椎间盘(IVD)等肌肉骨骼(MSK)组织的早期退行性变化,但需要较长的采集时间。在 MSK 成像中,软骨和 IVD 中的小特征对于诊断至关重要,在重建加速数据时必须保留这些特征。为此,我们提出了针对感兴趣区域的加速采集后处理:一种递归 UNet 深度学习架构,可从加速的 T 预备快照梯度回波采集提供膝关节软骨、髋关节软骨和腰椎 IVD 的 T 图,通过多分量损失函数针对软骨和 IVD 性能进行优化,该损失函数对这些区域的错误进行最大惩罚。在加速因子 R=2 到 10 时,膝关节和髋关节软骨的定量误差分别低于 10%和 9%,而对于大多数 R=2 到 12 的情况,偏倚都低于 3ms。在 IVD 中,从 R=2 到 6 的平均定量误差低于 12%。基于灰度共生矩阵的方案表明,膝关节和髋关节管道的性能优于最先进的模型,在大多数 R 下保留了平滑的纹理,而在适度的 R 下则保留了更清晰的纹理。我们的方法可生成稳健的 T 图,同时为优化和评估重建算法提供新方法,以更好地保留小的、临床相关的特征。