Suppr超能文献

CASF-Net:用于医学图像分割的交叉注意力与跨尺度融合网络。

CASF-Net: Cross-attention and cross-scale fusion network for medical image segmentation.

作者信息

Zheng Jianwei, Liu Hao, Feng Yuchao, Xu Jinshan, Zhao Liang

机构信息

College of Computer Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.

College of Computer Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.

出版信息

Comput Methods Programs Biomed. 2023 Feb;229:107307. doi: 10.1016/j.cmpb.2022.107307. Epub 2022 Dec 12.

Abstract

BACKGROUND

Automatic segmentation of medical images has progressed greatly owing to the development of convolutional neural networks (CNNs). However, there are two uncertainties with current approaches based on convolutional operations: (1) how to eliminate the general limitations that CNNs lack the ability of modeling long-range dependencies and global contextual interactions, and (2) how to efficiently discover and integrate global and local features that are implied in the image. Notably, these two problems are interconnected, yet previous approaches mainly focus on the first problem and ignore the importance of information integration.

METHODS

In this paper, we propose a novel cross-attention and cross-scale fusion network (CASF-Net), which aims to explicitly tap the potential of dual-branch networks and fully integrate the coarse and fine-grained feature representations. Specifically, the well-designed dual-branch encoder hammers at modeling non-local dependencies and multi-scale contexts, significantly improving the quality of semantic segmentation. Moreover, the proposed cross-attention and cross-scale module efficiently perform multi-scale information fusion, being capable of further exploring the long-range contextual information.

RESULTS

Extensive experiments conducted on three different types of medical image segmentation tasks demonstrate the state-of-the-art performance of our proposed method both visually and numerically.

CONCLUSIONS

This paper assembles the feature representation capabilities of CNN and transformer and proposes cross-attention and cross-scale fusion algorithms. The promising results show new possibilities of using cross-fusion mechanisms in more downstream medical image tasks.

摘要

背景

由于卷积神经网络(CNN)的发展,医学图像的自动分割取得了巨大进展。然而,当前基于卷积操作的方法存在两个不确定性:(1)如何消除CNN缺乏对长程依赖和全局上下文交互进行建模能力的一般局限性,以及(2)如何有效地发现并整合图像中隐含的全局和局部特征。值得注意的是,这两个问题相互关联,但先前的方法主要关注第一个问题,而忽略了信息整合的重要性。

方法

在本文中,我们提出了一种新颖的交叉注意力和跨尺度融合网络(CASF-Net),旨在明确挖掘双分支网络的潜力,并充分整合粗粒度和细粒度特征表示。具体而言,精心设计的双分支编码器致力于对非局部依赖和多尺度上下文进行建模,显著提高语义分割的质量。此外,所提出的交叉注意力和跨尺度模块有效地执行多尺度信息融合,能够进一步探索长程上下文信息。

结果

在三种不同类型的医学图像分割任务上进行的大量实验在视觉和数值上都证明了我们所提出方法的领先性能。

结论

本文整合了CNN和Transformer的特征表示能力,并提出了交叉注意力和跨尺度融合算法。这些有前景的结果展示了在更多下游医学图像任务中使用交叉融合机制的新可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验