Suppr超能文献

EAAC-Net:一种用于皮肤病变分割的高效自适应注意力与卷积融合网络。

EAAC-Net: An Efficient Adaptive Attention and Convolution Fusion Network for Skin Lesion Segmentation.

作者信息

Fan Chao, Zhu Zhentong, Peng Bincheng, Xuan Zhihui, Zhu Xinru

机构信息

School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou City, Henan Province, China.

Key Laboratory of Grain Information Processing and Control, Ministry of Education, Zhengzhou City, Henan Province, China.

出版信息

J Imaging Inform Med. 2025 Apr;38(2):1120-1136. doi: 10.1007/s10278-024-01223-6. Epub 2024 Aug 15.

Abstract

Accurate segmentation of skin lesions in dermoscopic images is of key importance for quantitative analysis of melanoma. Although existing medical image segmentation methods significantly improve skin lesion segmentation, they still have limitations in extracting local features with global information, do not handle challenging lesions well, and usually have a large number of parameters and high computational complexity. To address these issues, this paper proposes an efficient adaptive attention and convolutional fusion network for skin lesion segmentation (EAAC-Net). We designed two parallel encoders, where the efficient adaptive attention feature extraction module (EAAM) adaptively establishes global spatial dependence and global channel dependence by constructing the adjacency matrix of the directed graph and can adaptively filter out the least relevant tokens at the coarse-grained region level, thus reducing the computational complexity of the self-attention mechanism. The efficient multiscale attention-based convolution module (EMA⋅C) utilizes multiscale attention for cross-space learning of local features extracted from the convolutional layer to enhance the representation of richly detailed local features. In addition, we designed a reverse attention feature fusion module (RAFM) to enhance the effective boundary information gradually. To validate the performance of our proposed network, we compared it with other methods on ISIC 2016, ISIC 2018, and PH public datasets, and the experimental results show that EAAC-Net has superior segmentation performance under commonly used evaluation metrics.

摘要

在皮肤镜图像中准确分割皮肤病变对于黑色素瘤的定量分析至关重要。尽管现有的医学图像分割方法显著改善了皮肤病变分割,但它们在利用全局信息提取局部特征方面仍存在局限性,不能很好地处理具有挑战性的病变,并且通常具有大量参数和高计算复杂度。为了解决这些问题,本文提出了一种用于皮肤病变分割的高效自适应注意力与卷积融合网络(EAAC-Net)。我们设计了两个并行编码器,其中高效自适应注意力特征提取模块(EAAM)通过构建有向图的邻接矩阵自适应地建立全局空间依赖性和全局通道依赖性,并能在粗粒度区域级别自适应地滤除最不相关的令牌,从而降低自注意力机制的计算复杂度。基于高效多尺度注意力的卷积模块(EMA⋅C)利用多尺度注意力对从卷积层提取的局部特征进行跨空间学习,以增强丰富详细的局部特征表示。此外,我们设计了一个反向注意力特征融合模块(RAFM)来逐步增强有效边界信息。为了验证我们提出的网络的性能,我们在ISIC 2016、ISIC 2018和PH公共数据集上与其他方法进行了比较,实验结果表明,在常用评估指标下,EAAC-Net具有优越的分割性能。

相似文献

9
GA-Net: Ghost convolution adaptive fusion skin lesion segmentation network.GA-Net:幽灵卷积自适应融合皮肤病变分割网络。
Comput Biol Med. 2023 Sep;164:107273. doi: 10.1016/j.compbiomed.2023.107273. Epub 2023 Jul 27.
10
BLA-Net:Boundary learning assisted network for skin lesion segmentation.BLA-Net:用于皮肤病变分割的边界学习辅助网络。
Comput Methods Programs Biomed. 2022 Nov;226:107190. doi: 10.1016/j.cmpb.2022.107190. Epub 2022 Oct 19.

本文引用的文献

1
UNETR++: Delving Into Efficient and Accurate 3D Medical Image Segmentation.UNETR++:深入研究高效准确的 3D 医学图像分割。
IEEE Trans Med Imaging. 2024 Sep;43(9):3377-3390. doi: 10.1109/TMI.2024.3398728. Epub 2024 Sep 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验