Suppr超能文献

基于深度学习的机器人辅助根治性前列腺切除术后路精囊腺和输精管识别。

Deep Learning-Based Seminal Vesicle and Vas Deferens Recognition in the Posterior Approach of Robot-Assisted Radical Prostatectomy.

机构信息

Surgical Device Innovation Office, National Cancer Center Hospital East, Kashiwa, Chiba, Japan; Department of Urology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan; Department of Urology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan.

Department of Urology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan.

出版信息

Urology. 2023 Mar;173:98-103. doi: 10.1016/j.urology.2022.12.006. Epub 2022 Dec 23.

Abstract

OBJECTIVE

To develop a convolutional neural network to recognize the seminal vesicle and vas deferens (SV-VD) in the posterior approach of robot-assisted radical prostatectomy (RARP) and assess the performance of the convolutional neural network model under clinically relevant conditions.

METHODS

Intraoperative videos of robot-assisted radical prostatectomy performed by the posterior approach from 3 institutions were obtained between 2019 and 2020. Using SV-VD dissection videos, semantic segmentation of the seminal vesicle-vas deferens area was performed using a convolutional neural network-based approach. The dataset was split into training and test data in a 10:3 ratio. The average time required by 6 novice urologists to correctly recognize the SV-VD was compared using intraoperative videos with and without segmentation masks generated by the convolutional neural network model, which was evaluated with the test data using the Dice similarity coefficient. Training and test datasets were compared using the Mann-Whitney U-test and chi-square test. Time required to recognize the SV-VD was evaluated using the Mann-Whitney U-test.

RESULTS

From 26 patient videos, 1 040 images were created (520 SV-VD annotated images and 520 SV-VD non-displayed images). The convolutional neural network model had a Dice similarity coefficient value of 0.73 in the test data. Compared with original videos, videos with the generated segmentation mask promoted significantly faster seminal vesicle and vas deferens recognition (P < .001).

CONCLUSION

The convolutional neural network model provides accurate recognition of the SV-VD in the posterior approach RARP, which may be helpful, especially for novice urologists.

摘要

目的

开发一种卷积神经网络,以识别机器人辅助根治性前列腺切除术(RARP)后入路中的精囊和输精管(SV-VD),并评估卷积神经网络模型在临床相关条件下的性能。

方法

本研究收集了 2019 年至 2020 年 3 家机构进行的后入路机器人辅助根治性前列腺切除术的术中视频。使用 SV-VD 解剖视频,采用基于卷积神经网络的方法对精囊-输精管区域进行语义分割。数据集以 10:3 的比例分为训练数据和测试数据。使用术中视频比较了 6 名新手泌尿科医生在有无卷积神经网络模型生成的分割掩模的情况下正确识别 SV-VD 的平均时间,使用测试数据评估了 Dice 相似系数。使用 Mann-Whitney U 检验和卡方检验比较了训练和测试数据集。使用 Mann-Whitney U 检验评估识别 SV-VD 的时间。

结果

从 26 名患者的视频中创建了 1040 张图像(520 张 SV-VD 标注图像和 520 张 SV-VD 未显示图像)。在测试数据中,卷积神经网络模型的 Dice 相似系数值为 0.73。与原始视频相比,带有生成分割掩模的视频显著提高了精囊和输精管的识别速度(P<0.001)。

结论

卷积神经网络模型能够准确识别 RARP 后入路中的 SV-VD,这可能对新手泌尿科医生特别有帮助。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验