United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB, UK.
Sci Rep. 2022 Dec 27;12(1):22451. doi: 10.1038/s41598-022-25682-5.
A machine-learned spin-lattice interatomic potential (MSLP) for magnetic iron is developed and applied to mesoscopic scale defects. It is achieved by augmenting a spin-lattice Hamiltonian with a neural network term trained to descriptors representing a mix of local atomic configuration and magnetic environments. It reproduces the cohesive energy of BCC and FCC phases with various magnetic states. It predicts the formation energy and complex magnetic structure of point defects in quantitative agreement with density functional theory (DFT) including the reversal and quenching of magnetic moments near the core of defects. The Curie temperature is calculated through spin-lattice dynamics showing good computational stability at high temperature. The potential is applied to study magnetic fluctuations near sizable dislocation loops. The MSLP transcends current treatments using DFT and molecular dynamics, and surpasses other spin-lattice potentials that only treat near-perfect crystal cases.
我们开发了一种用于铁磁体的机器学习自旋晶格原子间势(MSLP),并将其应用于介观尺度的缺陷。该方法通过在自旋晶格哈密顿量中增加一个神经网络项来实现,该神经网络项经过训练,可以表示局部原子构型和磁环境的混合描述符。它再现了具有各种磁态的 BCC 和 FCC 相的内聚能。它预测了点缺陷的形成能和复杂磁结构,与密度泛函理论(DFT)定量一致,包括缺陷核心附近磁矩的反转和淬火。通过自旋晶格动力学计算居里温度,在高温下表现出良好的计算稳定性。该势被应用于研究大位错环附近的磁涨落。MSLP 超越了当前使用 DFT 和分子动力学的处理方法,也超越了仅处理近完美晶体情况的其他自旋晶格势。