文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

来自维管束植物的呼吸复合物 III、复合物 IV 和超复合物 III-IV 的原子结构。

Atomic structures of respiratory complex III, complex IV, and supercomplex III-IV from vascular plants.

机构信息

Department of Molecular and Cellular Biology, University of California Davis, Davis, United States.

BIOEM Facility, University of California Davis, Davis, United States.

出版信息

Elife. 2021 Jan 19;10:e62047. doi: 10.7554/eLife.62047.


DOI:10.7554/eLife.62047
PMID:33463523
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7815315/
Abstract

Mitochondrial complex III (CIII) and complex IV (CIV), which can associate into a higher-order supercomplex (SC III+IV), play key roles in respiration. However, structures of these plant complexes remain unknown. We present atomic models of CIII, CIV, and SC III+IV from determined by single-particle cryoEM. The structures reveal plant-specific differences in the MPP domain of CIII and define the subunit composition of CIV. Conformational heterogeneity analysis of CIII revealed long-range, coordinated movements across the complex, as well as the motion of CIII's iron-sulfur head domain. The CIV structure suggests that, in plants, proton translocation does not occur via the H channel. The supercomplex interface differs significantly from that in yeast and bacteria in its interacting subunits, angle of approach and limited interactions in the mitochondrial matrix. These structures challenge long-standing assumptions about the plant complexes and generate new mechanistic hypotheses.

摘要

线粒体复合物 III(CIII)和复合物 IV(CIV)可以形成更高阶的超复合物(SC III+IV),在呼吸作用中发挥关键作用。然而,这些植物复合物的结构仍然未知。我们通过单颗粒冷冻电镜技术确定了来自的 CIII、CIV 和 SC III+IV 的原子模型。这些结构揭示了 CIII 的 MPP 结构域中的植物特异性差异,并定义了 CIV 的亚基组成。CIII 的构象异质性分析揭示了整个复合物的长程、协调运动,以及 CIII 的铁硫头部结构域的运动。CIV 的结构表明,在植物中,质子转运不是通过 H 通道发生的。超复合物界面与酵母和细菌的界面在相互作用的亚基、接近角度和线粒体基质中的有限相互作用方面存在显著差异。这些结构对植物复合物的长期假设提出了挑战,并产生了新的机械假设。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ab2/7815315/ff9e25f237a8/elife-62047-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ab2/7815315/3728aed1ddc7/elife-62047-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ab2/7815315/861cf4f5978d/elife-62047-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ab2/7815315/f684f885f00b/elife-62047-fig1-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ab2/7815315/a7f604dfd115/elife-62047-fig1-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ab2/7815315/56130a5c38a3/elife-62047-fig1-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ab2/7815315/1e8759cd0a06/elife-62047-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ab2/7815315/50177117a112/elife-62047-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ab2/7815315/ad7e4ee8a94a/elife-62047-fig2-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ab2/7815315/bcb42fa91caf/elife-62047-fig2-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ab2/7815315/b8392053a947/elife-62047-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ab2/7815315/8cf2da8b59c0/elife-62047-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ab2/7815315/ff9e25f237a8/elife-62047-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ab2/7815315/3728aed1ddc7/elife-62047-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ab2/7815315/861cf4f5978d/elife-62047-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ab2/7815315/f684f885f00b/elife-62047-fig1-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ab2/7815315/a7f604dfd115/elife-62047-fig1-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ab2/7815315/56130a5c38a3/elife-62047-fig1-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ab2/7815315/1e8759cd0a06/elife-62047-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ab2/7815315/50177117a112/elife-62047-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ab2/7815315/ad7e4ee8a94a/elife-62047-fig2-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ab2/7815315/bcb42fa91caf/elife-62047-fig2-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ab2/7815315/b8392053a947/elife-62047-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ab2/7815315/8cf2da8b59c0/elife-62047-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ab2/7815315/ff9e25f237a8/elife-62047-fig3-figsupp2.jpg

相似文献

[1]
Atomic structures of respiratory complex III, complex IV, and supercomplex III-IV from vascular plants.

Elife. 2021-1-19

[2]
Plant-specific features of respiratory supercomplex I + III from Vigna radiata.

Nat Plants. 2023-1

[3]
Atomic structure of a mitochondrial complex I intermediate from vascular plants.

Elife. 2020-8-25

[4]
Plant supercomplex I + III2 structure and function: implications for the growing field.

Biochem Soc Trans. 2024-8-28

[5]
Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain.

Nat Struct Mol Biol. 2017-10-5

[6]
Structure and function of the III-IV-cyt supercomplex.

Proc Natl Acad Sci U S A. 2023-11-14

[7]
Structures of Respiratory Supercomplex I+III Reveal Functional and Conformational Crosstalk.

Mol Cell. 2019-9-19

[8]
Cryo-EM structure and kinetics reveal electron transfer by 2D diffusion of cytochrome in the yeast III-IV respiratory supercomplex.

Proc Natl Acad Sci U S A. 2021-3-16

[9]
Megacomplex organization of the oxidative phosphorylation system by structural analysis of respiratory supercomplexes from potato.

Biochim Biophys Acta. 2009-1

[10]
Mitochondrial Complex I Activity is Conditioned by Supercomplex I-IIIIV Assembly in Brain Cells: Relevance for Parkinson's Disease.

Neurochem Res. 2017-6

引用本文的文献

[1]
Structure, assembly and inhibition of the Toxoplasma gondii respiratory chain supercomplex.

Nat Struct Mol Biol. 2025-5-19

[2]
Mitochondrial Proteases and Their Roles in Mitophagy in Plants, Animals, and Yeast.

Plant Cell Physiol. 2025-4-23

[3]
EARLY NODULIN93 acts via cytochrome c oxidase to alter respiratory ATP production and root growth in plants.

Plant Cell. 2024-11-2

[4]
Plant supercomplex I + III2 structure and function: implications for the growing field.

Biochem Soc Trans. 2024-8-28

[5]
The lowdown on breakdown: Open questions in plant proteolysis.

Plant Cell. 2024-9-3

[6]
Bridging structural and cell biology with cryo-electron microscopy.

Nature. 2024-4

[7]
Identification of Fungicide Combinations for Overcoming and Fungicide Resistance.

Microorganisms. 2023-12-12

[8]
Functional and biochemical characterization of the Toxoplasma gondii succinate dehydrogenase complex.

PLoS Pathog. 2023-12

[9]
Structure and function of the III-IV-cyt supercomplex.

Proc Natl Acad Sci U S A. 2023-11-14

[10]
OXPHOS Organization and Activity in Mitochondria of Plants with Different Life Strategies.

Int J Mol Sci. 2023-10-16

本文引用的文献

[1]
3D variability analysis: Resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM.

J Struct Biol. 2021-6

[2]
CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks.

Nat Methods. 2021-2

[3]
Atomic structure of a mitochondrial complex I intermediate from vascular plants.

Elife. 2020-8-25

[4]
The Oxidative Phosphorylation system of the mitochondria in plants.

Mitochondrion. 2020-7

[5]
A common coupling mechanism for A-type heme-copper oxidases from bacteria to mitochondria.

Proc Natl Acad Sci U S A. 2020-4-14

[6]
Kinetic advantage of forming respiratory supercomplexes.

Biochim Biophys Acta Bioenerg. 2020-3-19

[7]
The evolution of SPHIRE-crYOLO particle picking and its application in automated cryo-EM processing workflows.

Commun Biol. 2020-2-11

[8]
Bottom-up structural proteomics: cryoEM of protein complexes enriched from the cellular milieu.

Nat Methods. 2019-11-25

[9]
Plant organellar RNA editing: what 30 years of research has revealed.

Plant J. 2020-3

[10]
Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix.

Acta Crystallogr D Struct Biol. 2019-10-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索