Department of Molecular and Cellular Biology, University of California Davis, Davis, United States.
BIOEM Facility, University of California Davis, Davis, United States.
Elife. 2021 Jan 19;10:e62047. doi: 10.7554/eLife.62047.
Mitochondrial complex III (CIII) and complex IV (CIV), which can associate into a higher-order supercomplex (SC III+IV), play key roles in respiration. However, structures of these plant complexes remain unknown. We present atomic models of CIII, CIV, and SC III+IV from determined by single-particle cryoEM. The structures reveal plant-specific differences in the MPP domain of CIII and define the subunit composition of CIV. Conformational heterogeneity analysis of CIII revealed long-range, coordinated movements across the complex, as well as the motion of CIII's iron-sulfur head domain. The CIV structure suggests that, in plants, proton translocation does not occur via the H channel. The supercomplex interface differs significantly from that in yeast and bacteria in its interacting subunits, angle of approach and limited interactions in the mitochondrial matrix. These structures challenge long-standing assumptions about the plant complexes and generate new mechanistic hypotheses.
线粒体复合物 III(CIII)和复合物 IV(CIV)可以形成更高阶的超复合物(SC III+IV),在呼吸作用中发挥关键作用。然而,这些植物复合物的结构仍然未知。我们通过单颗粒冷冻电镜技术确定了来自的 CIII、CIV 和 SC III+IV 的原子模型。这些结构揭示了 CIII 的 MPP 结构域中的植物特异性差异,并定义了 CIV 的亚基组成。CIII 的构象异质性分析揭示了整个复合物的长程、协调运动,以及 CIII 的铁硫头部结构域的运动。CIV 的结构表明,在植物中,质子转运不是通过 H 通道发生的。超复合物界面与酵母和细菌的界面在相互作用的亚基、接近角度和线粒体基质中的有限相互作用方面存在显著差异。这些结构对植物复合物的长期假设提出了挑战,并产生了新的机械假设。
Biochem Soc Trans. 2024-8-28
Nat Struct Mol Biol. 2017-10-5
Proc Natl Acad Sci U S A. 2023-11-14
Proc Natl Acad Sci U S A. 2021-3-16
Nat Struct Mol Biol. 2025-5-19
Plant Cell Physiol. 2025-4-23
Biochem Soc Trans. 2024-8-28
Plant Cell. 2024-9-3
Microorganisms. 2023-12-12
Proc Natl Acad Sci U S A. 2023-11-14
Int J Mol Sci. 2023-10-16
Mitochondrion. 2020-7
Proc Natl Acad Sci U S A. 2020-4-14
Biochim Biophys Acta Bioenerg. 2020-3-19
Acta Crystallogr D Struct Biol. 2019-10-2