Suppr超能文献

基于护理强度的重症监护护理患者分类系统的开发。

Development of a patient classification system for critical care nursing based on nursing intensity.

机构信息

Department of Nursing, College of Medicine, Wonkwang University, Iksan, South Korea.

Department of Nursing, Changwon National University, Changwon, South Korea.

出版信息

Int J Nurs Pract. 2023 Oct;29(5):e13128. doi: 10.1111/ijn.13128. Epub 2022 Dec 30.

Abstract

AIM

This study aimed to develop a valid and reliable new intensive care unit nursing classification tool, including direct and indirect nursing activities, by measuring the nursing intensity provided to patients.

BACKGROUND

Prior tools primarily examine patients' medical records or disease severity/interactions, systematically failing to reflect comorbidity risk factors.

DESIGN

The Delphi technique was used to test the content validity of the Korean Patient Classification System on Nursing Intensity for Critical Care Nurses (KPCSNIC).

METHODS

Data were collected from four hospitals in two provinces from 26 December 2017 to 30 January 2018. To verify construct validity, staff nurses classified 365 patients, comparing differences by medical department and type of stay. To verify interrater reliability, data collectors and the head nurses of three intensive care units classified 87 patients.

RESULTS

The KPCSNIC had 8 categories, 44 nursing activities and 105 criteria. Reliability was high (r = .84). Construct validity was verified by revealing differences according to medical department and type of patient. Using total scores, four KPCSNIC groups were identified.

CONCLUSION

The KPCSNIC developed in this study can support staffing for nursing intensity by providing more specific evaluation criteria. Moreover, it reflects nursing intensity, including direct and indirect nursing activities.

摘要

目的

本研究旨在通过测量患者所接受的护理强度,开发一种有效的、可靠的新的重症监护病房护理分类工具,包括直接和间接护理活动。

背景

先前的工具主要检查患者的病历或疾病严重程度/相互作用,系统地未能反映合并症风险因素。

设计

采用德尔菲技术对重症监护护士的护理强度韩国患者分类系统(KPCSNIC)进行内容效度检验。

方法

数据于 2017 年 12 月 26 日至 2018 年 1 月 30 日从两个省的四家医院收集。为了验证结构效度,护士对 365 名患者进行分类,比较不同医疗部门和住院类型的差异。为了验证评分者间信度,数据收集员和三个重症监护病房的护士长对 87 名患者进行分类。

结果

KPCSNIC 有 8 个类别、44 项护理活动和 105 个标准。可靠性较高(r=0.84)。结构效度通过根据医疗部门和患者类型的差异得到验证。使用总分,确定了四个 KPCSNIC 组。

结论

本研究开发的 KPCSNIC 可以通过提供更具体的评估标准,为护理强度配置提供支持。此外,它反映了包括直接和间接护理活动在内的护理强度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验