Suppr超能文献

一种用于即时检测心脏生物标志物的侧向流动生物传感检测分类的新型斑块选择方法。

A novel patches-selection method for the classification of point-of-care biosensing lateral flow assays with cardiac biomarkers.

作者信息

Fairooz Towfeeq, McNamee Sara E, Finlay Dewar, Ng Kok Yew, McLaughlin James

机构信息

School of Engineering, Ulster University, Belfast, United Kingdom.

出版信息

Biosens Bioelectron. 2023 Mar 1;223:115016. doi: 10.1016/j.bios.2022.115016. Epub 2022 Dec 26.

Abstract

Cardiovascular Disease (CVD) is amongst the leading cause of death globally, which calls for rapid detection and treatment. Biosensing devices are used for the diagnosis of cardiovascular disease at the point-of-care (POC), with lateral flow assays (LFAs) being particularly useful. However, due to their low sensitivity, most LFAs have been shown to have difficulties detecting low analytic concentrations. Breakthroughs in artificial intelligence (AI) and image processing reduced this detection constraint and improved disease diagnosis. This paper presents a novel patches-selection approach for generating LFA images from the test line and control line of LFA images, analyzing the image features, and utilizing them to reliably predict and classify LFA images by deploying classification algorithms, specifically Convolutional Neural Networks (CNNs). The generated images were supplied as input data to the CNN model, a strong model for extracting crucial information from images, to classify the target images and provide risk stratification levels to medical professionals. With this approach, the classification model produced about 98% accuracy, and as per the literature review, this approach has not been investigated previously. These promising results show the proposed method may be useful for identifying a wide variety of diseases and conditions, including cardiovascular problems.

摘要

心血管疾病(CVD)是全球主要死因之一,这就需要快速检测和治疗。生物传感设备用于在护理点(POC)诊断心血管疾病,其中侧向流动分析(LFA)尤为有用。然而,由于其灵敏度较低,大多数LFA已被证明在检测低分析浓度时存在困难。人工智能(AI)和图像处理方面的突破减少了这种检测限制并改善了疾病诊断。本文提出了一种新颖的补丁选择方法,用于从LFA图像的测试线和控制线生成LFA图像,分析图像特征,并通过部署分类算法,特别是卷积神经网络(CNN),利用这些特征可靠地预测和分类LFA图像。生成的图像作为输入数据提供给CNN模型,该模型是从图像中提取关键信息的强大模型,用于对目标图像进行分类并为医学专业人员提供风险分层水平。通过这种方法,分类模型的准确率约为98%,根据文献综述,该方法此前尚未被研究过。这些令人鼓舞的结果表明,所提出的方法可能有助于识别包括心血管问题在内的多种疾病和病症。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验