Suppr超能文献

基于空间约束稀疏功能脑网络的图注意力网络在自闭症谱系障碍诊断中的应用。

Autism spectrum disorder diagnosis using graph attention network based on spatial-constrained sparse functional brain networks.

机构信息

School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China; School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China.

School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China.

出版信息

Comput Biol Med. 2021 Dec;139:104963. doi: 10.1016/j.compbiomed.2021.104963. Epub 2021 Oct 19.

Abstract

The accurate diagnosis of autism spectrum disorder (ASD), a common mental disease in children, has always been an important task in clinical practice. In recent years, the use of graph neural network (GNN) based on functional brain network (FBN) has shown powerful performance for disease diagnosis. The challenge to construct "ideal" FBN from resting-state fMRI data remained. Moreover, it remains unclear whether and to what extent the non-Euclidean structure of different FBNs affect the performance of GNN-based disease classification. In this paper, we proposed a new method named Pearson's correlation-based Spatial Constraints Representation (PSCR) to estimate the FBN structures that were transformed to brain graphs and then fed into a graph attention network (GAT) to diagnose ASD. Extensive experiments on comparing different FBN construction methods and classification frameworks were conducted on the ABIDE I dataset (n = 871). The results demonstrated the superiority of our PSCR method and the influence of different FBNs on the GNN-based classification results. The proposed PSCR and GAT framework achieved promising classification results for ASD (accuracy: 72.40%), which significantly outperformed competing methods. This will help facilitate patient-control separation, and provide a promising solution for future disease diagnosis based on the FBN and GNN framework.

摘要

自闭症谱系障碍 (ASD) 的准确诊断一直是临床实践中的一项重要任务,这是一种常见的儿童精神疾病。近年来,基于功能脑网络 (FBN) 的图神经网络 (GNN) 在疾病诊断中表现出了强大的性能。从静息态 fMRI 数据构建“理想”FBN 的挑战依然存在。此外,不同 FBN 的非欧几里得结构是否以及在何种程度上影响基于 GNN 的疾病分类性能仍不清楚。在本文中,我们提出了一种名为 Pearson 相关的空间约束表示(PSCR)的新方法,用于估计 FBN 结构,然后将其转换为脑图,并输入图注意网络(GAT)中以诊断 ASD。在 ABIDE I 数据集(n=871)上进行了比较不同 FBN 构建方法和分类框架的广泛实验。结果表明了我们的 PSCR 方法的优越性以及不同 FBN 对基于 GNN 的分类结果的影响。所提出的 PSCR 和 GAT 框架在 ASD 的分类中取得了有希望的结果(准确率:72.40%),明显优于竞争方法。这将有助于促进患者-对照分离,并为未来基于 FBN 和 GNN 框架的疾病诊断提供有前景的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验