Department of Biochemistry and Molecular Biology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland, USA.
Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA.
J Biol Chem. 2023 Feb;299(2):102851. doi: 10.1016/j.jbc.2022.102851. Epub 2022 Dec 29.
Misfolded proteins are recognized and degraded through protein quality control (PQC) pathways, which are essential for maintaining proteostasis and normal cellular functions. Defects in PQC can result in disease, including cancer, cardiovascular disease, and neurodegeneration. The small ubiquitin-related modifiers (SUMOs) were previously implicated in the degradation of nuclear misfolded proteins, but their functions in cytoplasmic PQC are unclear. Here, in a systematic screen of SUMO protein mutations in the budding yeast Saccharomyces cerevisiae, we identified a mutant allele (Smt3-K38A/K40A) that sensitizes cells to proteotoxic stress induced by amino acid analogs. Smt3-K38A/K40A mutant strains also exhibited a defect in the turnover of a soluble PQC model substrate containing the CL1 degron (NES-GFP-Ura3-CL1) localized in the cytoplasm, but not the nucleus. Using human U2OS SUMO1- and SUMO2-KO cell lines, we observed a similar SUMO-dependent pathway for degradation of the mammalian degron-containing PQC reporter protein, GFP-CL1, also only in the cytoplasm but not the nucleus. Moreover, we found that turnover of GFP-CL1 in the cytoplasm was uniquely dependent on SUMO1 but not the SUMO2 paralogue. Additionally, we showed that turnover of GFP-CL1 in the cytoplasm is dependent on the AAA-ATPase, Cdc48/p97. Cellular fractionation studies and analysis of a SUMO1-GFP-CL1 fusion protein revealed that SUMO1 promotes cytoplasmic misfolded protein degradation by maintaining substrate solubility. Collectively, our findings reveal a conserved and previously unrecognized role for SUMO1 in regulating cytoplasmic PQC and provide valuable insights into the roles of sumoylation in PQC-associated diseases.
错误折叠的蛋白质通过蛋白质质量控制(PQC)途径被识别和降解,该途径对于维持蛋白质平衡和正常细胞功能至关重要。PQC 的缺陷可导致疾病,包括癌症、心血管疾病和神经退行性疾病。先前有研究表明,小泛素相关修饰物(SUMO)参与了核内错误折叠蛋白质的降解,但它们在细胞质 PQC 中的功能尚不清楚。在本研究中,我们通过对酿酒酵母(Saccharomyces cerevisiae)的 SUMO 蛋白突变进行系统筛选,鉴定出一个突变等位基因(Smt3-K38A/K40A),该基因使细胞对氨基酸类似物诱导的蛋白毒性应激敏感。Smt3-K38A/K40A 突变株在一种含有 CL1 降解基序(NES-GFP-Ura3-CL1)的可溶性 PQC 模型底物的周转中也表现出缺陷,该底物定位于细胞质而非细胞核。使用人 U2OS SUMO1 和 SUMO2 基因敲除细胞系,我们观察到类似的 SUMO 依赖性途径可降解含有哺乳动物降解基序的 PQC 报告蛋白 GFP-CL1,同样只在细胞质而不在细胞核中。此外,我们发现 GFP-CL1 在细胞质中的周转仅依赖于 SUMO1,而不依赖于 SUMO2 同工酶。此外,我们还表明 GFP-CL1 在细胞质中的周转依赖于 AAA-ATPase,即 Cdc48/p97。细胞组分分离研究和 SUMO1-GFP-CL1 融合蛋白的分析表明,SUMO1 通过维持底物的可溶性来促进细胞质中错误折叠蛋白质的降解。总的来说,我们的研究结果揭示了 SUMO1 在调节细胞质 PQC 中的保守和以前未被认识的作用,并为 SUMO 化在与 PQC 相关疾病中的作用提供了有价值的见解。