Suppr超能文献

模拟动态胆固醇再分配有利于膜融合孔的收缩。

Simulated dynamic cholesterol redistribution favors membrane fusion pore constriction.

机构信息

Unit on Membrane Chemical Physics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland.

Unit on Membrane Chemical Physics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.

出版信息

Biophys J. 2023 Jun 6;122(11):2162-2175. doi: 10.1016/j.bpj.2022.12.024. Epub 2022 Dec 31.

Abstract

Endo- and exocytosis proceed through a highly strained membrane fusion pore topology regardless of the aiding protein machinery. The membrane's lipid components bias fusion pores toward expansion or closure, modifying the necessary work done by proteins. Cholesterol, a key component of plasma membranes, promotes both inverted lipid phases with concave leaflets (i.e., negative total curvature, which thins the leaflet) and flat bilayer phases with thick, ordered hydrophobic interiors. We demonstrate by theory and simulation that both leaflets of nascent catenoidal fusion pores have negative total curvature. Furthermore, the hydrophobic core of bilayers with strong negative Gaussian curvature is thinned. Therefore, it is an open question whether cholesterol will be enriched in these regions because of the negative total curvature or depleted because of the membrane thinning. Here, we compare all-atom molecular dynamics simulations (built using a procedure to create specific fusion pore geometries) and theory to understand the underlying reasons for lipid redistribution on fusion pores. Our all-atom molecular dynamics simulations resolve this question by showing that cholesterol is strongly excluded from the thinned neck of fusion and fission pores, revealing that thickness (and/or lipid order) influences cholesterol distributions more than curvature. The results imply that cholesterol exclusion can drive fusion pore closure by creating a small, cholesterol-depleted zone in the neck. This model agrees with literature evidence that membrane reshaping is connected to cholesterol-dependent lateral phase separation.

摘要

无论辅助蛋白机制如何,内吐作用和外吐作用都是通过高度紧张的膜融合孔拓扑结构进行的。膜的脂质成分使融合孔偏向于扩张或关闭,从而改变蛋白质所需的功。胆固醇是质膜的关键成分,它促进具有凹面小叶的反向脂质相(即负总曲率,使小叶变薄)和具有厚而有序的疏水性内部的平面双层相。我们通过理论和模拟证明,新生的环状融合孔的两个小叶都具有负总曲率。此外,具有强负高斯曲率的双层膜的疏水核心变薄。因此,胆固醇是否会因负总曲率而在这些区域富集,或者是否会因膜变薄而耗尽,这是一个悬而未决的问题。在这里,我们比较了全原子分子动力学模拟(使用创建特定融合孔几何形状的程序构建)和理论,以了解融合孔上脂质重新分布的潜在原因。我们的全原子分子动力学模拟通过显示胆固醇强烈排斥融合和裂变孔变薄的颈部,解决了这个问题,这表明厚度(和/或脂质有序性)比曲率更能影响胆固醇的分布。结果表明,胆固醇排斥可以通过在颈部形成一个小的、胆固醇耗尽的区域来驱动融合孔关闭。该模型与文献证据一致,即膜重塑与胆固醇依赖性的横向相分离有关。

相似文献

2
The Gaussian curvature elastic energy of intermediates in membrane fusion.膜融合中间体的高斯曲率弹性能量。
Biophys J. 2008 Dec;95(11):5200-15. doi: 10.1529/biophysj.108.140152. Epub 2008 Sep 19.
3
The importance of membrane defects-lessons from simulations.膜缺陷的重要性:模拟研究的启示。
Acc Chem Res. 2014 Aug 19;47(8):2244-51. doi: 10.1021/ar4002729. Epub 2014 Jun 3.
7
The role of cholesterol in membrane fusion.胆固醇在膜融合中的作用。
Chem Phys Lipids. 2016 Sep;199:136-143. doi: 10.1016/j.chemphyslip.2016.05.003. Epub 2016 May 11.
8
The exocytotic fusion pore modeled as a lipidic pore.胞吐融合孔被模拟为脂质孔。
Biophys J. 1992 Oct;63(4):1118-32. doi: 10.1016/S0006-3495(92)81679-X.

引用本文的文献

3
Lipid redistribution due to a cell-cell fusion pore.由于细胞间融合孔导致的脂质重分布。
Biophys J. 2024 Oct 15;123(20):3640-3645. doi: 10.1016/j.bpj.2024.09.015. Epub 2024 Sep 18.
4
Making the cut: Multiscale simulation of membrane remodeling.切变:膜重塑的多尺度模拟。
Curr Opin Struct Biol. 2024 Aug;87:102831. doi: 10.1016/j.sbi.2024.102831. Epub 2024 May 12.
6
Mechanisms of SNARE proteins in membrane fusion.SNARE 蛋白在膜融合中的作用机制。
Nat Rev Mol Cell Biol. 2024 Feb;25(2):101-118. doi: 10.1038/s41580-023-00668-x. Epub 2023 Oct 17.
8
Membranes in focus.聚焦膜。
Biophys J. 2023 Jun 6;122(11):E1-E4. doi: 10.1016/j.bpj.2023.05.005. Epub 2023 May 19.

本文引用的文献

2
Molecular Shape Solution for Mesoscopic Remodeling of Cellular Membranes.分子形状解决方案用于细胞膜的介观重塑。
Annu Rev Biophys. 2022 May 9;51:473-497. doi: 10.1146/annurev-biophys-011422-100054. Epub 2022 Mar 3.
3
Endosomal Cholesterol in Viral Infections - A Common Denominator?病毒感染中的内体胆固醇——一个共同因素?
Front Physiol. 2021 Nov 11;12:750544. doi: 10.3389/fphys.2021.750544. eCollection 2021.
4
Vesicle cholesterol controls exocytotic fusion pore.囊泡胆固醇控制胞吐融合孔。
Cell Calcium. 2022 Jan;101:102503. doi: 10.1016/j.ceca.2021.102503. Epub 2021 Nov 20.
6
Lessons in self-defence: inhibition of virus entry by intrinsic immunity.自身防御的教训:固有免疫抑制病毒进入。
Nat Rev Immunol. 2022 Jun;22(6):339-352. doi: 10.1038/s41577-021-00626-8. Epub 2021 Oct 13.
7
Mechanisms of SARS-CoV-2 entry into cells.SARS-CoV-2 进入细胞的机制。
Nat Rev Mol Cell Biol. 2022 Jan;23(1):3-20. doi: 10.1038/s41580-021-00418-x. Epub 2021 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验