Suppr超能文献

用于COVID-19大流行预测的纳米光子储层计算

Nanophotonic reservoir computing for COVID-19 pandemic forecasting.

作者信息

Liu Bocheng, Xie Yiyuan, Liu Weichen, Jiang Xiao, Ye Yichen, Song Tingting, Chai Junxiong, Feng Manying, Yuan Haodong

机构信息

School of Electronics and Information Engineering, Southwest University, Chongqing, 400715 China.

Key Laboratory of Networks and Cloud Computing Security of Universities in Chongqing, Chongqing, 400715 China.

出版信息

Nonlinear Dyn. 2023;111(7):6895-6914. doi: 10.1007/s11071-022-08190-z. Epub 2022 Dec 27.

Abstract

The coronavirus disease 2019 (COVID-19) has spread worldwide in unprecedented speed, and diverse negative impacts have seriously endangered human society. Accurately forecasting the number of COVID-19 cases can help governments and public health organizations develop the right prevention strategies in advance to contain outbreaks. In this work, a long-term 6-month COVID-19 pandemic forecast in second half of 2021 and a short-term 30-day daily ahead COVID-19 forecast in December 2021 are successfully implemented via a novel nanophotonic reservoir computing based on silicon optomechanical oscillators with photonic crystal cavities, benefitting from its simpler learning algorithm, abundant nonlinear characteristics, and some unique advantages such as CMOS compatibility, fabrication cost, and monolithic integration. In essence, the nonlinear time series related to COVID-19 are mapped to the high-dimensional nonlinear space by the optical nonlinear properties of nanophotonic reservoir computing. The testing-dataset forecast results of new cases, new deaths, cumulative cases, and cumulative deaths for six countries demonstrate that the forecasted blue curves are awfully close to the real red curves with exceedingly small forecast errors. Moreover, the forecast results commendably reflect the variations of the actual case data, revealing the different epidemic transmission laws in developed and developing countries. More importantly, the daily ahead forecast results during December 2021 of four kinds of cases for six countries illustrate that the daily forecasted values are highly coincident with the real values, while the relevant forecast errors are tiny enough to verify the good forecasting competence of COVID-19 pandemic dominated by Omicron strain. Therefore, the implemented nanophotonic reservoir computing can provide some foreknowledge on prevention strategy and healthcare management for COVID-19 pandemic.

摘要

2019冠状病毒病(COVID-19)以前所未有的速度在全球蔓延,各种负面影响严重危及人类社会。准确预测COVID-19病例数有助于政府和公共卫生组织提前制定正确的预防策略以遏制疫情爆发。在这项工作中,通过一种基于具有光子晶体腔的硅光机械振荡器的新型纳米光子储层计算,成功实现了对2021年下半年为期6个月的COVID-19大流行的长期预测以及对2021年12月为期30天的每日COVID-19的短期预测,这得益于其更简单的学习算法、丰富的非线性特性以及诸如CMOS兼容性、制造成本和单片集成等一些独特优势。本质上,与COVID-19相关的非线性时间序列通过纳米光子储层计算的光学非线性特性被映射到高维非线性空间。六个国家的新病例、新死亡病例、累计病例和累计死亡病例的测试数据集预测结果表明,预测的蓝色曲线与实际的红色曲线非常接近,预测误差极小。此外,预测结果很好地反映了实际病例数据的变化,揭示了发达国家和发展中国家不同的疫情传播规律。更重要的是,六个国家在2021年12月对四种病例的每日提前预测结果表明,每日预测值与实际值高度吻合,而相关预测误差小到足以验证由奥密克戎毒株主导的COVID-19大流行的良好预测能力。因此,所实现的纳米光子储层计算可以为COVID-19大流行的预防策略和医疗管理提供一些前瞻性知识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b7/9792320/ae566a699cd1/11071_2022_8190_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验