Suppr超能文献

随着约旦出现奥密克戎变种对短期和长期新冠疫情预测的重新审视

Short-Term and Long-Term COVID-19 Pandemic Forecasting Revisited with the Emergence of OMICRON Variant in Jordan.

作者信息

Hussein Tareq, Hammad Mahmoud H, Surakhi Ola, AlKhanafseh Mohammed, Fung Pak Lun, Zaidan Martha A, Wraith Darren, Ershaidat Nidal

机构信息

Environmental and Atmospheric Research Laboratory (EARL), Department of Physics, School of Science, The University of Jordan, Amman 11942, Jordan.

Institute for Atmospheric and Earth System Research (INAR/Physics), University of Helsinki, FI-00014 Helsinki, Finland.

出版信息

Vaccines (Basel). 2022 Apr 7;10(4):569. doi: 10.3390/vaccines10040569.

Abstract

Three simple approaches to forecast the COVID-19 epidemic in Jordan were previously proposed by Hussein, et al.: a short-term forecast (STF) based on a linear forecast model with a learning database on the reported cases in the previous 5-40 days, a long-term forecast (LTF) based on a mathematical formula that describes the COVID-19 pandemic situation, and a hybrid forecast (HF), which merges the STF and the LTF models. With the emergence of the OMICRON variant, the LTF failed to forecast the pandemic due to vital reasons related to the infection rate and the speed of the OMICRON variant, which is faster than the previous variants. However, the STF remained suitable for the sudden changes in epi curves because these simple models learn for the previous data of reported cases. In this study, we revisited these models by introducing a simple modification for the LTF and the HF model in order to better forecast the COVID-19 pandemic by considering the OMICRON variant. As another approach, we also tested a time-delay neural network (TDNN) to model the dataset. Interestingly, the new modification was to reuse the same function previously used in the LTF model after changing some parameters related to shift and time-lag. Surprisingly, the mathematical function type was still valid, suggesting this is the best one to be used for such pandemic situations of the same virus family. The TDNN was data-driven, and it was robust and successful in capturing the sudden change in +qPCR cases before and after of emergence of the OMICRON variant.

摘要

侯赛因等人先前提出了三种预测约旦新冠疫情的简单方法

一种基于线性预测模型的短期预测(STF),其学习数据库为过去5至40天内报告病例的数据;一种基于描述新冠疫情形势的数学公式的长期预测(LTF);以及一种将STF和LTF模型合并的混合预测(HF)。随着奥密克戎变异株的出现,由于与感染率及奥密克戎变异株传播速度相关的重要原因(该变异株传播速度比先前变异株更快),LTF未能对疫情做出预测。然而,STF仍然适用于疫情曲线的突然变化,因为这些简单模型会从报告病例的先前数据中学习。在本研究中,我们通过对LTF和HF模型进行简单修改来重新审视这些模型,以便通过考虑奥密克戎变异株更好地预测新冠疫情。作为另一种方法,我们还测试了一个时延神经网络(TDNN)来对数据集进行建模。有趣的是,新的修改是在改变一些与偏移和时延相关的参数后,重新使用LTF模型中先前使用的相同函数。令人惊讶的是,该数学函数类型仍然有效,这表明它是用于同一病毒家族此类疫情情况的最佳函数。TDNN是数据驱动的,并且在捕捉奥密克戎变异株出现前后+qPCR病例的突然变化方面既稳健又成功。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/738d/9025683/d8d4a54d3ad1/vaccines-10-00569-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验