Suppr超能文献

基于分形维数与模糊逻辑相结合的混合方法对世界各国新冠疫情时间序列进行预测。

Forecasting of COVID-19 time series for countries in the world based on a hybrid approach combining the fractal dimension and fuzzy logic.

作者信息

Castillo Oscar, Melin Patricia

机构信息

Tijuana Institute of Technology, Tijuana, Mexico.

出版信息

Chaos Solitons Fractals. 2020 Nov;140:110242. doi: 10.1016/j.chaos.2020.110242. Epub 2020 Aug 24.

Abstract

We describe in this paper a hybrid intelligent approach for forecasting COVID-19 time series combining fractal theory and fuzzy logic. The mathematical concept of the fractal dimension is used to measure the complexity of the dynamics in the time series of the countries in the world. Fuzzy Logic is used to represent the uncertainty in the process of making a forecast. The hybrid approach consists on a fuzzy model formed by a set of fuzzy rules that use as input values the linear and nonlinear fractal dimensions of the time series and as outputs the forecast for the countries based on the COVID-19 time series of confirmed cases and deaths. The main contribution is the proposed hybrid approach combining the fractal dimension and fuzzy logic for enabling an efficient and accurate forecasting of COVID-19 time series. Publicly available data sets of 10 countries in the world have been used to build the fuzzy model with time series in a fixed period. After that, other periods of time were used to verify the effectiveness of the proposed approach for the forecasted values of the 10 countries. Forecasting windows of 10 and 30 days ahead were used to test the proposed approach. Forecasting average accuracy is 98%, which can be considered good considering the complexity of the COVID problem. The proposed approach can help people in charge of decision making to fight the pandemic can use the information of a short window to decide immediate actions and also the longer window (like 30 days) can be beneficial in long term decisions.

摘要

我们在本文中描述了一种结合分形理论和模糊逻辑的混合智能方法,用于预测新冠疫情时间序列。分形维数的数学概念用于衡量世界各国时间序列中动态变化的复杂性。模糊逻辑用于表示预测过程中的不确定性。该混合方法由一个模糊模型组成,该模型由一组模糊规则构成,这些规则将时间序列的线性和非线性分形维数用作输入值,并将基于新冠确诊病例和死亡病例时间序列的各国预测值作为输出。主要贡献在于提出了一种结合分形维数和模糊逻辑的混合方法,以实现对新冠疫情时间序列的高效准确预测。利用世界上10个国家的公开数据集,在固定时间段内构建了带有时间序列的模糊模型。之后,使用其他时间段来验证所提方法对这10个国家预测值的有效性。提前10天和30天的预测窗口用于测试所提方法。预测平均准确率为98%,考虑到新冠问题的复杂性,这可以被认为是不错的。所提方法可以帮助负责决策的人员抗击疫情,他们可以利用短窗口信息来决定立即采取的行动,而较长的窗口(如30天)在长期决策中可能会有所帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6e7/7444908/7a1ccc4ca8f0/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验