van de Wal R S W, Nicholls R J, Behar D, McInnes K, Stammer D, Lowe J A, Church J A, DeConto R, Fettweis X, Goelzer H, Haasnoot M, Haigh I D, Hinkel J, Horton B P, James T S, Jenkins A, LeCozannet G, Levermann A, Lipscomb W H, Marzeion B, Pattyn F, Payne A J, Pfeffer W T, Price S F, Seroussi H, Sun S, Veatch W, White K
Institute for Marine and Atmospheric Research Utrecht Utrecht University TA Utrecht The Netherlands.
Department of Physical Geography Utrecht University TA Utrecht The Netherlands.
Earths Future. 2022 Nov;10(11):e2022EF002751. doi: 10.1029/2022EF002751. Epub 2022 Nov 7.
Sea level rise (SLR) is a long-lasting consequence of climate change because global anthropogenic warming takes centuries to millennia to equilibrate for the deep ocean and ice sheets. SLR projections based on climate models support policy analysis, risk assessment and adaptation planning today, despite their large uncertainties. The central range of the SLR distribution is estimated by process-based models. However, risk-averse practitioners often require information about plausible future conditions that lie in the tails of the SLR distribution, which are poorly defined by existing models. Here, a community effort combining scientists and practitioners builds on a framework of discussing physical evidence to quantify high-end global SLR for practitioners. The approach is complementary to the IPCC AR6 report and provides further physically plausible high-end scenarios. High-end estimates for the different SLR components are developed for two climate scenarios at two timescales. For global warming of +2°C in 2100 (RCP2.6/SSP1-2.6) relative to pre-industrial values our high-end global SLR estimates are up to 0.9 m in 2100 and 2.5 m in 2300. Similarly, for a (RCP8.5/SSP5-8.5), we estimate up to 1.6 m in 2100 and up to 10.4 m in 2300. The large and growing differences between the scenarios beyond 2100 emphasize the long-term benefits of mitigation. However, even a modest 2°C warming may cause multi-meter SLR on centennial time scales with profound consequences for coastal areas. Earlier high-end assessments focused on instability mechanisms in Antarctica, while here we emphasize the importance of the timing of ice shelf collapse around Antarctica. This is highly uncertain due to low understanding of the driving processes. Hence both process understanding and emission scenario control high-end SLR.
海平面上升(SLR)是气候变化的一个长期后果,因为全球人为变暖需要数百年到数千年的时间才能使深海和冰盖达到平衡。尽管基于气候模型的海平面上升预测存在很大的不确定性,但如今它们仍为政策分析、风险评估和适应规划提供支持。基于过程的模型估计了海平面上升分布的中心范围。然而,规避风险的从业者通常需要有关海平面上升分布尾部可能出现的未来情况的信息,而现有模型对这些情况的定义并不明确。在此,科学家和从业者共同努力,在讨论物理证据的框架基础上,为从业者量化全球高端海平面上升情况。该方法是对政府间气候变化专门委员会(IPCC)第六次评估报告(AR6)的补充,并提供了更多物理上合理的高端情景。针对两种气候情景在两个时间尺度上,对不同海平面上升组成部分进行了高端估计。相对于工业化前的值,到2100年全球变暖 +2°C(代表性浓度路径2.6/共享社会经济路径1-2.6)时,我们的全球高端海平面上升估计在2100年高达0.9米,在2300年高达2.5米。同样,对于(代表性浓度路径8.5/共享社会经济路径5-8.5),我们估计在2100年高达1.6米,在2300年高达10.4米。2100年以后各情景之间巨大且不断扩大的差异凸显了减缓措施的长期效益。然而,即使是适度的2°C变暖,在百年时间尺度上也可能导致数米的海平面上升,给沿海地区带来深远影响。早期的高端评估侧重于南极洲的不稳定机制,而在此我们强调南极洲周围冰架崩塌时间的重要性。由于对驱动过程的了解不足,这一点高度不确定。因此,对过程的理解和排放情景都对高端海平面上升有影响。