LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France.
Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zürich, Zürich, Switzerland.
Nature. 2021 Apr;592(7856):726-731. doi: 10.1038/s41586-021-03436-z. Epub 2021 Apr 28.
Glaciers distinct from the Greenland and Antarctic ice sheets are shrinking rapidly, altering regional hydrology, raising global sea level and elevating natural hazards. Yet, owing to the scarcity of constrained mass loss observations, glacier evolution during the satellite era is known only partially, as a geographic and temporal patchwork. Here we reveal the accelerated, albeit contrasting, patterns of glacier mass loss during the early twenty-first century. Using largely untapped satellite archives, we chart surface elevation changes at a high spatiotemporal resolution over all of Earth's glaciers. We extensively validate our estimates against independent, high-precision measurements and present a globally complete and consistent estimate of glacier mass change. We show that during 2000-2019, glaciers lost a mass of 267 ± 16 gigatonnes per year, equivalent to 21 ± 3 per cent of the observed sea-level rise. We identify a mass loss acceleration of 48 ± 16 gigatonnes per year per decade, explaining 6 to 19 per cent of the observed acceleration of sea-level rise. Particularly, thinning rates of glaciers outside ice sheet peripheries doubled over the past two decades. Glaciers currently lose more mass, and at similar or larger acceleration rates, than the Greenland or Antarctic ice sheets taken separately. By uncovering the patterns of mass change in many regions, we find contrasting glacier fluctuations that agree with the decadal variability in precipitation and temperature. These include a North Atlantic anomaly of decelerated mass loss, a strongly accelerated loss from northwestern American glaciers, and the apparent end of the Karakoram anomaly of mass gain. We anticipate our highly resolved estimates to advance the understanding of drivers that govern the distribution of glacier change, and to extend our capabilities of predicting these changes at all scales. Predictions robustly benchmarked against observations are critically needed to design adaptive policies for the local- and regional-scale management of water resources and cryospheric risks, as well as for the global-scale mitigation of sea-level rise.
与格陵兰和南极冰盖不同的冰川正在迅速收缩,改变了区域水文状况,导致全球海平面上升,增加了自然灾害的风险。然而,由于约束质量损失观测的稀缺性,在卫星时代,冰川的演化仅部分可知,呈现出地理和时间上的拼凑。在这里,我们揭示了 21 世纪初冰川质量损失加速的情况,尽管存在差异。我们利用大量未开发的卫星档案,以高时空分辨率绘制了地球上所有冰川的表面高程变化图。我们广泛地将我们的估计与独立的高精度测量进行了验证,并提供了一个全球完整且一致的冰川质量变化估计。我们表明,在 2000 年至 2019 年期间,冰川每年损失 267 ± 16 千兆吨的质量,相当于观测到的海平面上升的 21 ± 3%。我们确定了质量损失加速为每十年 48 ± 16 千兆吨/年,解释了观测到的海平面上升加速的 6%至 19%。特别是,过去二十年,冰架外围地区的冰川变薄速度翻了一番。目前,冰川的质量损失速度比单独的格陵兰或南极冰盖更大,而且加速速度也更快。通过揭示许多地区的质量变化模式,我们发现了与降水和温度的十年际变化相吻合的冰川波动的对比。其中包括北大西洋冰川质量损失减速的异常现象,北美西北部冰川质量加速损失的强烈异常现象,以及喀喇昆仑冰川质量增益异常现象的结束。我们预计,我们的高分辨率估计将有助于提高对控制冰川变化分布的驱动因素的认识,并扩大我们在所有尺度上预测这些变化的能力。需要对预测进行稳健的观测基准测试,以便为水资源和冰冻圈风险的地方和区域管理以及全球范围的海平面上升缓解制定适应性政策。