Iroegbu Austine Ofondu Chinomso, Ray Suprakas Sinha
Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa.
Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific & Industrial Research, CSIR, Pretoria 0001, South Africa.
ACS Omega. 2022 Dec 12;7(51):47547-47566. doi: 10.1021/acsomega.2c05848. eCollection 2022 Dec 27.
Envisage a world where discarded electrical/electronic devices and single-use consumables can dematerialize and lapse into the environment after the end-of-useful life without constituting health and environmental burdens. As available resources are consumed and human activities build up wastes, there is an urgency for the consolidation of efforts and strategies in meeting current materials needs while assuaging the concomitant negative impacts of conventional materials exploration, usage, and disposal. Hence, the emerging field of transient technology (Green Technology), rooted in eco-design and closing the material loop toward a friendlier and sustainable materials system, holds enormous possibilities for assuaging current challenges in materials usage and disposability. The core requirements for transient materials are anchored on meeting multicomponent functionality, low-cost production, simplicity in disposability, flexibility in materials fabrication and design, biodegradability, biocompatibility, and environmental benignity. In this regard, biorenewables such as cellulose-based materials have demonstrated capacity as promising platforms to fabricate scalable, renewable, greener, and efficient materials and devices such as membranes, sensors, display units (for example, OLEDs), and so on. This work critically reviews the recent progress of nanocellulosic materials in transient technologies toward mitigating current environmental challenges resulting from traditional material exploration, usage, and disposal. While spotlighting important fundamental properties and functions in the material selection toward practicability and identifying current difficulties, we propose crucial research directions in advancing transient technology and cellulose-based materials in closing the loop for conventional materials and sustainability.
废弃的电气/电子设备和一次性消费品在使用寿命结束后能够消失并融入环境,而不会对健康和环境造成负担。随着可用资源的消耗以及人类活动产生废弃物,迫切需要整合各种努力和策略,以满足当前的材料需求,同时减轻传统材料开采、使用和处置带来的负面影响。因此,新兴的瞬态技术领域(绿色技术),植根于生态设计并朝着更友好、可持续的材料系统闭合材料循环,在缓解当前材料使用和可处置性方面的挑战具有巨大潜力。瞬态材料的核心要求基于满足多组分功能、低成本生产、处置简便、材料制造和设计的灵活性、生物降解性、生物相容性以及环境友好性。在这方面,基于纤维素的材料等生物可再生材料已展现出作为制造可扩展、可再生、更环保且高效的材料和器件(如膜、传感器、显示单元(例如有机发光二极管)等)的有前景平台的能力。这项工作批判性地回顾了纳米纤维素材料在瞬态技术方面的最新进展,以减轻传统材料开采、使用和处置带来的当前环境挑战。在突出材料选择中对于实用性的重要基本特性和功能并识别当前困难的同时,我们提出了推进瞬态技术和纤维素基材料以闭合传统材料循环及实现可持续性的关键研究方向。