School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan, People's Republic of China.
Sci Rep. 2023 Jan 2;13(1):9. doi: 10.1038/s41598-022-26213-y.
Accurate tide level prediction is crucial to human activities in coastal areas. Many practical applications show that compared with traditional harmonic analysis, long short-term memory (LSTM), gated recurrent units (GRUs) and other neural networks, along with ensemble learning models, such as light gradient boosting machine (LightGBM) and eXtreme gradient boosting (XGBoost), can achieve extremely high prediction accuracy in relatively stationary time series. Therefore, this paper proposes a variable weight combination model based on LightGBM and CNN-BiGRU with relevant research. It uses the variable weight combination method to weight and synthesize the prediction results of the two base models so that the combination model has a stronger ability to capture time series features and fits the data well. The experimental results show that in contrast to the base model LightGBM, the RMSE value and MAE value of the combination model are reduced by 43.2% and 44.7%, respectively; in contrast to the base model CNN-BiGRU, the RMSE value and MAE value of the combination model are reduced by 35.3% and 39.1%, respectively. This means that the variable weight combination model can greatly improve the accuracy of tide level prediction. In addition, we use tidal data from different geographical environments to further verify the good universality of the model. This study provides a new idea and method for tide prediction.
精确的潮位预测对沿海地区的人类活动至关重要。许多实际应用表明,与传统的谐波分析、长短期记忆(LSTM)、门控循环单元(GRU)等神经网络相比,集成学习模型,如轻梯度提升机(LightGBM)和极端梯度提升(XGBoost),可以在相对稳定的时间序列中实现极高的预测精度。因此,本文提出了一种基于 LightGBM 和 CNN-BiGRU 的变权组合模型,并进行了相关研究。它使用变权组合方法对两个基础模型的预测结果进行加权和合成,使组合模型具有更强的时间序列特征捕获能力和良好的数据拟合能力。实验结果表明,与基础模型 LightGBM 相比,组合模型的均方根误差(RMSE)值和平均绝对误差(MAE)值分别降低了 43.2%和 44.7%;与基础模型 CNN-BiGRU 相比,组合模型的 RMSE 值和 MAE 值分别降低了 35.3%和 39.1%。这意味着变权组合模型可以大大提高潮位预测的准确性。此外,我们还使用来自不同地理环境的潮汐数据进一步验证了模型的良好通用性。本研究为潮汐预测提供了新的思路和方法。