Glaser Adam, Chandrashekar Jayaram, Vasquez Sonya, Arshadi Cameron, Javeri Rajvi, Ouellette Naveen, Jiang Xiaoyun, Baka Judith, Kovacs Gabor, Woodard Micah, Seshamani Shamishtaa, Cao Kevin, Clack Nathan, Recknagel Andrew, Grim Anna, Balaram Pooja, Turschak Emily, Hooper Marcus, Liddell Alan, Rohde John, Hellevik Ayana, Takasaki Kevin, Erion Barner Lindsey, Logsdon Molly, Chronopoulos Chris, de Vries Saskia E J, Ting Jonathan T, Perlmutter Steven, Kalmbach Brian E, Dembrow Nikolai, Tasic Bosiljka, Reid R Clay, Feng David, Svoboda Karel
Allen Institute for Neural Dynamics, Seattle, United States.
Chan Zuckerberg Initiative, Redwood City, United States.
Elife. 2025 Jun 30;12:RP91979. doi: 10.7554/eLife.91979.
Recent advances in tissue processing, labeling, and fluorescence microscopy are providing unprecedented views of the structure of cells and tissues at sub-diffraction resolutions and near single molecule sensitivity, driving discoveries in diverse fields of biology, including neuroscience. Biological tissue is organized over scales of nanometers to centimeters. Harnessing molecular imaging across intact, three-dimensional samples on this scale requires new types of microscopes with larger fields of view and working distance, as well as higher throughput. We present a new expansion-assisted selective plane illumination microscope (ExA-SPIM) with aberration-free 1.5 µm×1.5 µm×3 µm optical resolution over a large field of view (10.6×8.0 mm) and working distance (35 mm) at speeds up to 946 megavoxels/s. Combined with new tissue clearing and expansion methods, the microscope allows imaging centimeter-scale samples with 375 nm lateral and 750 nm axial resolution (4× expansion), including entire mouse brains, with high contrast and without sectioning. We illustrate ExA-SPIM by reconstructing individual neurons across the mouse brain, imaging cortico-spinal neurons in the macaque motor cortex, and visualizing axons in human white matter.
组织处理、标记和荧光显微镜技术的最新进展,正以前所未有的视角呈现细胞和组织在亚衍射分辨率及接近单分子灵敏度下的结构,推动着包括神经科学在内的多个生物学领域的发现。生物组织在从纳米到厘米的尺度上有序排列。在这个尺度上对完整的三维样本进行分子成像,需要新型显微镜,具备更大的视野、工作距离以及更高的通量。我们展示了一种新型的扩展辅助选择性平面照明显微镜(ExA-SPIM),其在大视野(10.6×8.0毫米)和工作距离(35毫米)下具有无像差的1.5微米×1.5微米×3微米光学分辨率,速度高达946兆体素/秒。结合新的组织透明化和扩展方法,该显微镜能够以375纳米横向分辨率和750纳米轴向分辨率(4倍扩展)对厘米级样本进行成像,包括完整的小鼠大脑,具有高对比度且无需切片。我们通过重建小鼠大脑中的单个神经元、对猕猴运动皮层中的皮质脊髓神经元进行成像以及观察人类白质中的轴突来展示ExA-SPIM。