Suppr超能文献

利用刺激响应型细胞黏附微材料在 3D 活复合组织内控制干细胞命运。

Steering Stem Cell Fate within 3D Living Composite Tissues Using Stimuli-Responsive Cell-Adhesive Micromaterials.

机构信息

Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands.

出版信息

Adv Sci (Weinh). 2023 Apr;10(10):e2205487. doi: 10.1002/advs.202205487. Epub 2023 Jan 4.

Abstract

Engineered living microtissues such as cellular spheroids and organoids have enormous potential for the study and regeneration of tissues and organs. Microtissues are typically engineered via self-assembly of adherent cells into cellular spheroids, which are characterized by little to no cell-material interactions. Consequently, 3D microtissue models currently lack structural biomechanical and biochemical control over their internal microenvironment resulting in suboptimal functional performance such as limited stem cell differentiation potential. Here, this work report on stimuli-responsive cell-adhesive micromaterials (SCMs) that can self-assemble with cells into 3D living composite microtissues through integrin binding, even under serum-free conditions. It is demonstrated that SCMs homogeneously distribute within engineered microtissues and act as biomechanically and biochemically tunable designer materials that can alter the composite tissue microenvironment on demand. Specifically, cell behavior is controlled based on the size, stiffness, number ratio, and biofunctionalization of SCMs in a temporal manner via orthogonal secondary crosslinking strategies. Photo-based mechanical tuning of SCMs reveals early onset stiffness-controlled lineage commitment of differentiating stem cell spheroids. In contrast to conventional encapsulation of stem cell spheroids within bulk hydrogel, incorporating cell-sized SCMs within stem cell spheroids uniquely provides biomechanical cues throughout the composite microtissues' volume, which is demonstrated to be essential for osteogenic differentiation.

摘要

工程化的活体微组织,如细胞球体和类器官,在组织和器官的研究和再生方面具有巨大的潜力。微组织通常通过贴壁细胞自组装成细胞球体来构建,其特点是细胞-材料相互作用很少或没有。因此,目前的 3D 微组织模型对其内部微环境缺乏结构生物力学和生化控制,导致功能表现不佳,例如有限的干细胞分化潜力。在这里,本工作报道了一种刺激响应型细胞黏附微材料(SCMs),它可以通过整合素结合,即使在无血清条件下,也可以与细胞自组装成 3D 活体复合微组织。结果表明,SCMs 在工程化的微组织中均匀分布,并作为具有生物力学和生物化学可调性的设计材料,可按需改变复合组织微环境。具体来说,基于 SCMs 的大小、刚度、数量比和生物功能化,通过正交二次交联策略,可以实现对细胞行为的时空控制。基于光的 SCMs 机械调谐揭示了分化的干细胞球体早期开始的刚度控制谱系决定。与传统的将干细胞球体包封在大块水凝胶中不同,将细胞大小的 SCMs 纳入干细胞球体中,可以在整个复合微组织体积内提供独特的生物力学线索,这对于成骨分化是必不可少的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92c9/10074101/cc5ac327c585/ADVS-10-2205487-g005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验