Suppr超能文献

使用卷积神经网络的自动分类算法在肿瘤正电子发射断层扫描中的评估

Evaluation of an Automatic Classification Algorithm Using Convolutional Neural Networks in Oncological Positron Emission Tomography.

作者信息

Pinochet Pierre, Eude Florian, Becker Stéphanie, Shah Vijay, Sibille Ludovic, Toledano Mathieu Nessim, Modzelewski Romain, Vera Pierre, Decazes Pierre

机构信息

Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France.

LITIS Quantif-EA 4108, University of Rouen, Rouen, France.

出版信息

Front Med (Lausanne). 2021 Feb 26;8:628179. doi: 10.3389/fmed.2021.628179. eCollection 2021.

Abstract

Our aim was to evaluate the performance in clinical research and in clinical routine of a research prototype, called positron emission tomography (PET) Assisted Reporting System (PARS) (Siemens Healthineers) and based on a convolutional neural network (CNN), which is designed to detect suspected cancer sites in fluorine-18 fluorodeoxyglucose (F-FDG) PET/computed tomography (CT). We retrospectively studied two cohorts of patients. The first cohort consisted of research-based patients who underwent PET scans as part of the initial workup for diffuse large B-cell lymphoma (DLBCL). The second cohort consisted of patients who underwent PET scans as part of the evaluation of miscellaneous cancers in clinical routine. In both cohorts, we assessed the correlation between manually and automatically segmented total metabolic tumor volumes (TMTVs), and the overlap between both segmentations (Dice score). For the research cohort, we also compared the prognostic value for progression-free survival (PFS) and overall survival (OS) of manually and automatically obtained TMTVs. For the first cohort (research cohort), data from 119 patients were retrospectively analyzed. The median Dice score between automatic and manual segmentations was 0.65. The intraclass correlation coefficient between automatically and manually obtained TMTVs was 0.68. Both TMTV results were predictive of PFS (hazard ratio: 2.1 and 3.3 for automatically based and manually based TMTVs, respectively) and OS (hazard ratio: 2.4 and 3.1 for automatically based and manually based TMTVs, respectively). For the second cohort (routine cohort), data from 430 patients were retrospectively analyzed. The median Dice score between automatic and manual segmentations was 0.48. The intraclass correlation coefficient between automatically and manually obtained TMTVs was 0.61. The TMTVs determined for the research cohort remain predictive of total and PFS for DLBCL. However, the segmentations and TMTVs determined automatically by the algorithm need to be verified and, sometimes, corrected to be similar to the manual segmentation.

摘要

我们的目的是评估一种名为正电子发射断层扫描(PET)辅助报告系统(PARS)(西门子医疗)的研究原型在临床研究和临床常规中的性能,该原型基于卷积神经网络(CNN),旨在检测氟-18氟脱氧葡萄糖(F-FDG)PET/计算机断层扫描(CT)中的疑似癌症部位。我们回顾性研究了两组患者。第一组由作为弥漫性大B细胞淋巴瘤(DLBCL)初始检查一部分而接受PET扫描的基于研究的患者组成。第二组由作为临床常规中各种癌症评估一部分而接受PET扫描的患者组成。在两组中,我们评估了手动分割和自动分割的总代谢肿瘤体积(TMTV)之间的相关性,以及两种分割之间的重叠度(Dice分数)。对于研究队列,我们还比较了手动和自动获得的TMTV对无进展生存期(PFS)和总生存期(OS)的预后价值。对于第一组(研究队列),回顾性分析了119例患者的数据。自动分割和手动分割之间的中位Dice分数为0.65。自动和手动获得的TMTV之间的组内相关系数为0.68。两种TMTV结果均对PFS(基于自动和基于手动的TMTV的风险比分别为2.1和3.3)和OS(基于自动和基于手动的TMTV的风险比分别为2.4和3.1)具有预测性。对于第二组(常规队列),回顾性分析了430例患者的数据。自动分割和手动分割之间的中位Dice分数为0.48。自动和手动获得的TMTV之间의组内相关系数为0.61。研究队列中确定的TMTV仍然对DLBCL的总生存期和PFS具有预测性。然而,算法自动确定的分割和TMTV需要进行验证,有时还需要进行校正,以使其与手动分割相似。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43a/7953145/ba64185e6d9f/fmed-08-628179-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验