Suppr超能文献

接受计算机视觉辅助协议来测量口罩使用的依从性:一项针对医院工作人员的单站点观察队列研究。

Acceptance of a computer vision facilitated protocol to measure adherence to face mask use: a single-site, observational cohort study among hospital staff.

机构信息

Emergency Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.

Massachusetts Institute of Technology Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, USA.

出版信息

BMJ Open. 2022 Dec 9;12(12):e062707. doi: 10.1136/bmjopen-2022-062707.

Abstract

OBJECTIVES

Mask adherence continues to be a critical public health measure to prevent transmission of aerosol pathogens, such as SARS-CoV-2. We aimed to develop and deploy a computer vision algorithm to provide real-time feedback of mask wearing among staff in a hospital.

DESIGN

Single-site, observational cohort study.

SETTING

An urban, academic hospital in Boston, Massachusetts, USA.

PARTICIPANTS

We enrolled adult hospital staff entering the hospital at a key ingress point.

INTERVENTIONS

Consenting participants entering the hospital were invited to experience the computer vision mask detection system. Key aspects of the detection algorithm and feedback were described to participants, who then completed a quantitative assessment to understand their perceptions and acceptance of interacting with the system to detect their mask adherence.

OUTCOME MEASURES

Primary outcomes were willingness to interact with the mask system, and the degree of comfort participants felt in interacting with a public facing computer vision mask algorithm.

RESULTS

One hundred and eleven participants with mean age 40 (SD15.5) were enrolled in the study. Males (47.7%) and females (52.3%) were equally represented, and the majority identified as white (N=54, 49%). Most participants (N=97, 87.3%) reported acceptance of the system and most participants (N=84, 75.7%) were accepting of deployment of the system to reinforce mask adherence in public places. One third of participants (N=36) felt that a public facing computer vision system would be an intrusion into personal privacy.Public-facing computer vision software to detect and provide feedback around mask adherence may be acceptable in the hospital setting. Similar systems may be considered for deployment in locations where mask adherence is important.

摘要

目的

戴口罩仍然是防止气溶胶病原体(如 SARS-CoV-2)传播的关键公共卫生措施。我们旨在开发和部署一种计算机视觉算法,为医院工作人员的口罩佩戴情况提供实时反馈。

设计

单站点、观察性队列研究。

地点

美国马萨诸塞州波士顿市的一家城市学术医院。

参与者

我们招募了进入医院主要入口的成年医院工作人员。

干预措施

同意参加的参与者被邀请体验计算机视觉口罩检测系统。向参与者描述了检测算法和反馈的关键方面,然后他们完成了一项定量评估,以了解他们对与系统互动以检测口罩佩戴情况的看法和接受程度。

主要结果

主要结果是愿意与口罩系统互动,以及参与者与公共面对的计算机视觉口罩算法互动的舒适度。

结果

共有 111 名平均年龄为 40 岁(SD15.5)的参与者入组研究。男性(47.7%)和女性(52.3%)的比例相当,大多数参与者(N=54,49%)为白人。大多数参与者(N=97,87.3%)报告接受该系统,大多数参与者(N=84,75.7%)接受在公共场所部署该系统以加强口罩佩戴。三分之一的参与者(N=36)认为面向公众的计算机视觉系统会侵犯个人隐私。用于检测和提供口罩佩戴情况反馈的面向公众的计算机视觉软件在医院环境中可能是可以接受的。在需要遵守口罩佩戴规定的地方,类似的系统可以考虑部署。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2eed/9742841/df35f90d4f61/bmjopen-2022-062707f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验