Suppr超能文献

医学图像计算分析的十个快速技巧。

Ten quick tips for computational analysis of medical images.

机构信息

Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, Ontario, Canada.

Department of Biomedical Engineering, Emory University, Atlanta, Georgia, United States of America.

出版信息

PLoS Comput Biol. 2023 Jan 5;19(1):e1010778. doi: 10.1371/journal.pcbi.1010778. eCollection 2023 Jan.

Abstract

Medical imaging is a great asset for modern medicine, since it allows physicians to spatially interrogate a disease site, resulting in precise intervention for diagnosis and treatment, and to observe particular aspect of patients' conditions that otherwise would not be noticeable. Computational analysis of medical images, moreover, can allow the discovery of disease patterns and correlations among cohorts of patients with the same disease, thus suggesting common causes or providing useful information for better therapies and cures. Machine learning and deep learning applied to medical images, in particular, have produced new, unprecedented results that can pave the way to advanced frontiers of medical discoveries. While computational analysis of medical images has become easier, however, the possibility to make mistakes or generate inflated or misleading results has become easier, too, hindering reproducibility and deployment. In this article, we provide ten quick tips to perform computational analysis of medical images avoiding common mistakes and pitfalls that we noticed in multiple studies in the past. We believe our ten guidelines, if taken into practice, can help the computational-medical imaging community to perform better scientific research that eventually can have a positive impact on the lives of patients worldwide.

摘要

医学成像对现代医学来说是一项重要的资产,因为它可以让医生对疾病部位进行空间检测,从而对诊断和治疗进行精确干预,并观察到患者病情中否则不易察觉的特定方面。此外,对医学图像进行计算分析可以发现患有相同疾病的患者队列中的疾病模式和相关性,从而提示共同的原因或为更好的治疗和治愈方法提供有用的信息。特别是将机器学习和深度学习应用于医学图像,已经产生了新的、前所未有的结果,可以为医学发现的前沿领域铺平道路。然而,尽管医学图像的计算分析变得更加容易,但也更容易出现错误或产生夸大或误导性的结果,从而阻碍了可重复性和部署。在本文中,我们提供了十个快速提示,以避免在过去的多项研究中我们注意到的常见错误和陷阱,来进行医学图像的计算分析。我们相信,如果将我们的十个准则付诸实践,可以帮助计算医学成像社区进行更好的科学研究,最终对全球患者的生活产生积极影响。

相似文献

1
Ten quick tips for computational analysis of medical images.
PLoS Comput Biol. 2023 Jan 5;19(1):e1010778. doi: 10.1371/journal.pcbi.1010778. eCollection 2023 Jan.
2
Eleven quick tips for data cleaning and feature engineering.
PLoS Comput Biol. 2022 Dec 15;18(12):e1010718. doi: 10.1371/journal.pcbi.1010718. eCollection 2022 Dec.
3
Ten quick tips for clinical electroencephalographic (EEG) data acquisition and signal processing.
PeerJ Comput Sci. 2024 Sep 3;10:e2256. doi: 10.7717/peerj-cs.2256. eCollection 2024.
4
Ten quick tips for electrocardiogram (ECG) signal processing.
PeerJ Comput Sci. 2024 Sep 3;10:e2295. doi: 10.7717/peerj-cs.2295. eCollection 2024.
5
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
6
Ten quick tips for machine learning in computational biology.
BioData Min. 2017 Dec 8;10:35. doi: 10.1186/s13040-017-0155-3. eCollection 2017.
7
Nine quick tips for pathway enrichment analysis.
PLoS Comput Biol. 2022 Aug 11;18(8):e1010348. doi: 10.1371/journal.pcbi.1010348. eCollection 2022 Aug.
8
Seven quick tips for gene-focused computational pangenomic analysis.
BioData Min. 2024 Sep 3;17(1):28. doi: 10.1186/s13040-024-00380-2.
9
Ten quick tips for avoiding pitfalls in multi-omics data integration analyses.
PLoS Comput Biol. 2023 Jul 6;19(7):e1011224. doi: 10.1371/journal.pcbi.1011224. eCollection 2023 Jul.
10
Ten quick tips for fuzzy logic modeling of biomedical systems.
PLoS Comput Biol. 2023 Dec 21;19(12):e1011700. doi: 10.1371/journal.pcbi.1011700. eCollection 2023 Dec.

引用本文的文献

1
Deep learning-based classification of multiple fundus diseases using ultra-widefield images.
Front Cell Dev Biol. 2025 Jul 17;13:1630667. doi: 10.3389/fcell.2025.1630667. eCollection 2025.
2
3
Ten quick tips for electrocardiogram (ECG) signal processing.
PeerJ Comput Sci. 2024 Sep 3;10:e2295. doi: 10.7717/peerj-cs.2295. eCollection 2024.
7
Robust cardiac segmentation corrected with heuristics.
PLoS One. 2023 Oct 27;18(10):e0293560. doi: 10.1371/journal.pone.0293560. eCollection 2023.
8
Ten quick tips for avoiding pitfalls in multi-omics data integration analyses.
PLoS Comput Biol. 2023 Jul 6;19(7):e1011224. doi: 10.1371/journal.pcbi.1011224. eCollection 2023 Jul.

本文引用的文献

1
Exploring Feature Representation Learning for Semi-Supervised Medical Image Segmentation.
IEEE Trans Neural Netw Learn Syst. 2024 Nov;35(11):16589-16601. doi: 10.1109/TNNLS.2023.3296652. Epub 2024 Oct 29.
2
Guidelines and evaluation of clinical explainable AI in medical image analysis.
Med Image Anal. 2023 Feb;84:102684. doi: 10.1016/j.media.2022.102684. Epub 2022 Nov 17.
3
The ABC recommendations for validation of supervised machine learning results in biomedical sciences.
Front Big Data. 2022 Sep 27;5:979465. doi: 10.3389/fdata.2022.979465. eCollection 2022.
4
Nine quick tips for pathway enrichment analysis.
PLoS Comput Biol. 2022 Aug 11;18(8):e1010348. doi: 10.1371/journal.pcbi.1010348. eCollection 2022 Aug.
6
Advancing code sharing in the computational biology community.
PLoS Comput Biol. 2022 Jun 2;18(6):e1010193. doi: 10.1371/journal.pcbi.1010193. eCollection 2022 Jun.
7
Explainable artificial intelligence (XAI) in deep learning-based medical image analysis.
Med Image Anal. 2022 Jul;79:102470. doi: 10.1016/j.media.2022.102470. Epub 2022 May 4.
8
On the influence of several factors on pathway enrichment analysis.
Brief Bioinform. 2022 May 13;23(3). doi: 10.1093/bib/bbac143.
9
Subtle pitfalls in the search for faster medical imaging.
Proc Natl Acad Sci U S A. 2022 Apr 26;119(17):e2203040119. doi: 10.1073/pnas.2203040119. Epub 2022 Apr 22.
10
Machine learning for medical imaging: methodological failures and recommendations for the future.
NPJ Digit Med. 2022 Apr 12;5(1):48. doi: 10.1038/s41746-022-00592-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验