Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, Ontario, Canada.
Dipartimento di Giurisprudenza Economia e Sociologia, Università Magna Graecia di Catanzaro, Catanzaro, Italy.
PLoS Comput Biol. 2022 Aug 11;18(8):e1010348. doi: 10.1371/journal.pcbi.1010348. eCollection 2022 Aug.
Pathway enrichment analysis (PEA) is a computational biology method that identifies biological functions that are overrepresented in a group of genes more than would be expected by chance and ranks these functions by relevance. The relative abundance of genes pertinent to specific pathways is measured through statistical methods, and associated functional pathways are retrieved from online bioinformatics databases. In the last decade, along with the spread of the internet, higher availability of computational resources made PEA software tools easy to access and to use for bioinformatics practitioners worldwide. Although it became easier to use these tools, it also became easier to make mistakes that could generate inflated or misleading results, especially for beginners and inexperienced computational biologists. With this article, we propose nine quick tips to avoid common mistakes and to out a complete, sound, thorough PEA, which can produce relevant and robust results. We describe our nine guidelines in a simple way, so that they can be understood and used by anyone, including students and beginners. Some tips explain what to do before starting a PEA, others are suggestions of how to correctly generate meaningful results, and some final guidelines indicate some useful steps to properly interpret PEA results. Our nine tips can help users perform better pathway enrichment analyses and eventually contribute to a better understanding of current biology.
通路富集分析(Pathway Enrichment Analysis,PEA)是一种计算生物学方法,用于识别在一组基因中过度表达的生物学功能,这些功能的出现频率超过了随机预期,并根据相关性对这些功能进行排序。通过统计方法测量与特定通路相关的基因的相对丰度,并从在线生物信息学数据库中检索相关的功能通路。在过去的十年中,随着互联网的普及,计算资源的可用性更高,使得 PEA 软件工具更容易被全球生物信息学从业者访问和使用。尽管使用这些工具变得更加容易,但也更容易犯错误,从而产生夸大或误导性的结果,尤其是对于初学者和没有经验的计算生物学家。本文提出了九个快速提示,以避免常见错误,并进行全面、可靠、彻底的 PEA,从而产生相关和稳健的结果。我们以简单的方式描述了这九条准则,以便包括学生和初学者在内的任何人都可以理解和使用。一些提示解释了在开始 PEA 之前应该做什么,另一些则是关于如何正确生成有意义的结果的建议,还有一些最终的准则则指出了正确解释 PEA 结果的一些有用步骤。我们的九条提示可以帮助用户更好地进行通路富集分析,最终有助于更好地理解当前生物学。