Suppr超能文献

通路富集分析的 9 个快速技巧。

Nine quick tips for pathway enrichment analysis.

机构信息

Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, Ontario, Canada.

Dipartimento di Giurisprudenza Economia e Sociologia, Università Magna Graecia di Catanzaro, Catanzaro, Italy.

出版信息

PLoS Comput Biol. 2022 Aug 11;18(8):e1010348. doi: 10.1371/journal.pcbi.1010348. eCollection 2022 Aug.

Abstract

Pathway enrichment analysis (PEA) is a computational biology method that identifies biological functions that are overrepresented in a group of genes more than would be expected by chance and ranks these functions by relevance. The relative abundance of genes pertinent to specific pathways is measured through statistical methods, and associated functional pathways are retrieved from online bioinformatics databases. In the last decade, along with the spread of the internet, higher availability of computational resources made PEA software tools easy to access and to use for bioinformatics practitioners worldwide. Although it became easier to use these tools, it also became easier to make mistakes that could generate inflated or misleading results, especially for beginners and inexperienced computational biologists. With this article, we propose nine quick tips to avoid common mistakes and to out a complete, sound, thorough PEA, which can produce relevant and robust results. We describe our nine guidelines in a simple way, so that they can be understood and used by anyone, including students and beginners. Some tips explain what to do before starting a PEA, others are suggestions of how to correctly generate meaningful results, and some final guidelines indicate some useful steps to properly interpret PEA results. Our nine tips can help users perform better pathway enrichment analyses and eventually contribute to a better understanding of current biology.

摘要

通路富集分析(Pathway Enrichment Analysis,PEA)是一种计算生物学方法,用于识别在一组基因中过度表达的生物学功能,这些功能的出现频率超过了随机预期,并根据相关性对这些功能进行排序。通过统计方法测量与特定通路相关的基因的相对丰度,并从在线生物信息学数据库中检索相关的功能通路。在过去的十年中,随着互联网的普及,计算资源的可用性更高,使得 PEA 软件工具更容易被全球生物信息学从业者访问和使用。尽管使用这些工具变得更加容易,但也更容易犯错误,从而产生夸大或误导性的结果,尤其是对于初学者和没有经验的计算生物学家。本文提出了九个快速提示,以避免常见错误,并进行全面、可靠、彻底的 PEA,从而产生相关和稳健的结果。我们以简单的方式描述了这九条准则,以便包括学生和初学者在内的任何人都可以理解和使用。一些提示解释了在开始 PEA 之前应该做什么,另一些则是关于如何正确生成有意义的结果的建议,还有一些最终的准则则指出了正确解释 PEA 结果的一些有用步骤。我们的九条提示可以帮助用户更好地进行通路富集分析,最终有助于更好地理解当前生物学。

相似文献

1
Nine quick tips for pathway enrichment analysis.
PLoS Comput Biol. 2022 Aug 11;18(8):e1010348. doi: 10.1371/journal.pcbi.1010348. eCollection 2022 Aug.
2
Ten quick tips for bioinformatics analyses using an Apache Spark distributed computing environment.
PLoS Comput Biol. 2023 Jul 20;19(7):e1011272. doi: 10.1371/journal.pcbi.1011272. eCollection 2023 Jul.
3
Seven quick tips for gene-focused computational pangenomic analysis.
BioData Min. 2024 Sep 3;17(1):28. doi: 10.1186/s13040-024-00380-2.
4
Ten quick tips for clinical electroencephalographic (EEG) data acquisition and signal processing.
PeerJ Comput Sci. 2024 Sep 3;10:e2256. doi: 10.7717/peerj-cs.2256. eCollection 2024.
5
Eleven quick tips for data cleaning and feature engineering.
PLoS Comput Biol. 2022 Dec 15;18(12):e1010718. doi: 10.1371/journal.pcbi.1010718. eCollection 2022 Dec.
6
Ten quick tips for electrocardiogram (ECG) signal processing.
PeerJ Comput Sci. 2024 Sep 3;10:e2295. doi: 10.7717/peerj-cs.2295. eCollection 2024.
7
Ten quick tips for computational analysis of medical images.
PLoS Comput Biol. 2023 Jan 5;19(1):e1010778. doi: 10.1371/journal.pcbi.1010778. eCollection 2023 Jan.
8
GeneNotes--a novel information management software for biologists.
BMC Bioinformatics. 2005 Feb 1;6:20. doi: 10.1186/1471-2105-6-20.
9
Using BioPAX-Parser (BiP) to enrich lists of genes or proteins with pathway data.
BMC Bioinformatics. 2021 Sep 30;22(Suppl 13):376. doi: 10.1186/s12859-021-04297-z.
10
Bioinformatics software resources.
Brief Bioinform. 2004 Sep;5(3):300-4. doi: 10.1093/bib/5.3.300.

引用本文的文献

1
A Critical Evaluation of Background Gene Omission in Imaging Transcriptomics.
Biol Psychiatry Glob Open Sci. 2025 Jul 18;5(6):100568. doi: 10.1016/j.bpsgos.2025.100568. eCollection 2025 Nov.
2
Pathway Analysis Interpretation in the Multi-Omic Era.
BioTech (Basel). 2025 Jul 29;14(3):58. doi: 10.3390/biotech14030058.
7
A teaching proposal for a short course on biomedical data science.
PLoS Comput Biol. 2025 Apr 14;21(4):e1012946. doi: 10.1371/journal.pcbi.1012946. eCollection 2025 Apr.
9
Effects of light exposure during IVF: transcriptomic analysis of murine embryos and embryo-derived EVs.
Front Immunol. 2025 Feb 20;16:1429252. doi: 10.3389/fimmu.2025.1429252. eCollection 2025.

本文引用的文献

1
On the influence of several factors on pathway enrichment analysis.
Brief Bioinform. 2022 May 13;23(3). doi: 10.1093/bib/bbac143.
2
Ten quick tips for deep learning in biology.
PLoS Comput Biol. 2022 Mar 24;18(3):e1009803. doi: 10.1371/journal.pcbi.1009803. eCollection 2022 Mar.
3
Urgent need for consistent standards in functional enrichment analysis.
PLoS Comput Biol. 2022 Mar 9;18(3):e1009935. doi: 10.1371/journal.pcbi.1009935. eCollection 2022 Mar.
4
Gene-Interaction-Sensitive enrichment analysis in congenital heart disease.
BioData Min. 2022 Feb 12;15(1):4. doi: 10.1186/s13040-022-00287-w.
5
Navigating the pitfalls of applying machine learning in genomics.
Nat Rev Genet. 2022 Mar;23(3):169-181. doi: 10.1038/s41576-021-00434-9. Epub 2021 Nov 26.
7
Using BioPAX-Parser (BiP) to enrich lists of genes or proteins with pathway data.
BMC Bioinformatics. 2021 Sep 30;22(Suppl 13):376. doi: 10.1186/s12859-021-04297-z.
8
Pathway analysis in metabolomics: Recommendations for the use of over-representation analysis.
PLoS Comput Biol. 2021 Sep 7;17(9):e1009105. doi: 10.1371/journal.pcbi.1009105. eCollection 2021 Sep.
9
DOME: recommendations for supervised machine learning validation in biology.
Nat Methods. 2021 Oct;18(10):1122-1127. doi: 10.1038/s41592-021-01205-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验