Suppr超能文献

基于机器学习的胆囊癌预后模型构建:利用临床数据和治疗前[F]-FDG-PET影像组学特征

Machine learning-based prognostic modeling in gallbladder cancer using clinical data and pre-treatment [F]-FDG-PET-radiomic features.

作者信息

Nakajo Masatoyo, Hirahara Daisuke, Jinguji Megumi, Idichi Tetsuya, Hirahara Mitsuho, Tani Atsushi, Takumi Koji, Kamimura Kiyohisa, Ohtsuka Takao, Yoshiura Takashi

机构信息

Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.

Department of Management Planning Division, Harada Academy, 2-54-4 Higashitaniyama, Kagoshima, 890-0113, Japan.

出版信息

Jpn J Radiol. 2025 May;43(5):864-874. doi: 10.1007/s11604-024-01722-0. Epub 2024 Dec 28.

Abstract

OBJECTIVES

This study evaluates the effectiveness of machine learning (ML) models that incorporate clinical and 2-deoxy-2-[F]fluoro-D-glucose ([F]-FDG)-positron emission tomography (PET)-radiomic features for predicting outcomes in gallbladder cancer patients.

MATERIALS AND METHODS

The study analyzed 52 gallbladder cancer patients who underwent pre-treatment [F]-FDG-PET/CT scans between January 2011 and December 2021. Twenty-seven patients were assigned to the training cohort between January 2011 and January 2018, and the data randomly split into training (70%) and validation (30%) sets. The independent test cohort consisted of 25 patients between February 2018 and December 2021. Eight clinical features (T stage, N stage, M stage, Union for International Cancer Control [UICC] stage, histology, tumor size, carcinoembryonic antigen level, and carbohydrate antigen 19-9 level) and 49 radiomic features were used to forecast progression-free survival (PFS). Three feature selection methods were applied including the univariate statistical feature selection test method, least absolute shrinkage and selection operator Cox regression method and recursive feature elimination method, and two ML algorithms (Cox proportional hazard and random survival forest [RSF]) were employed. Predictive performance was assessed using the concordance index (C-index).

RESULTS

Two clinical variables (UICC stage, N stage) and three radiomic features (total lesion glycolysis, grey-level size-zone matrix_grey level non-uniformity and grey-level run-length matrix_run-length non-uniformity) were identified by the statistical feature selection method as significant for PFS prediction. The RSF model incorporating these features demonstrated strong predictive performance, with C-indices above 0.80 in both training and testing sets (training 0.81, testing 0.89). This model almost closely matched the actual and predicted progression timelines with a low mean absolute error of 1.435, a median absolute error of 0.082, and a root mean square error of 2.359.

CONCLUSION

This study highlights the potential of using ML approaches with clinical and pre-treatment [F]-FDG-PET radiomic data for predicting the prognosis of gallbladder cancer.

摘要

目的

本研究评估纳入临床及2-脱氧-2-[F]氟代-D-葡萄糖([F]-FDG)-正电子发射断层扫描(PET)-影像组学特征的机器学习(ML)模型对胆囊癌患者预后的预测效果。

材料与方法

本研究分析了2011年1月至2021年12月期间接受治疗前[F]-FDG-PET/CT扫描的52例胆囊癌患者。2011年1月至2018年1月期间的27例患者被分配至训练队列,数据随机分为训练集(70%)和验证集(30%)。独立测试队列由2018年2月至2021年12月期间的25例患者组成。使用8项临床特征(T分期、N分期、M分期、国际癌症控制联盟[UICC]分期、组织学、肿瘤大小、癌胚抗原水平和糖类抗原19-9水平)和49项影像组学特征预测无进展生存期(PFS)。应用了三种特征选择方法,包括单变量统计特征选择测试法、最小绝对收缩和选择算子Cox回归法以及递归特征消除法,并采用了两种ML算法(Cox比例风险模型和随机生存森林[RSF])。使用一致性指数(C指数)评估预测性能。

结果

统计特征选择方法确定了两项临床变量(UICC分期、N分期)和三项影像组学特征(总病灶糖酵解、灰度大小区域矩阵_灰度不均匀性和灰度游程长度矩阵_游程长度不均匀性)对PFS预测具有显著性。纳入这些特征的RSF模型显示出强大的预测性能,训练集和测试集的C指数均高于0.80(训练集0.81,测试集0.89)。该模型几乎与实际和预测的进展时间线紧密匹配,平均绝对误差低至1.435,中位数绝对误差为0.082,均方根误差为2.359。

结论

本研究突出了使用ML方法结合临床及治疗前[F]-FDG-PET影像组学数据预测胆囊癌预后的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e06e/12053127/96574adbe582/11604_2024_1722_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验