Suppr超能文献

ATP9A 缺乏通过调节 RAB5 和 RAB11 的活性导致 ADHD 和异常内体再循环。

ATP9A deficiency causes ADHD and aberrant endosomal recycling via modulating RAB5 and RAB11 activity.

机构信息

Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China.

Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China.

出版信息

Mol Psychiatry. 2023 Mar;28(3):1219-1231. doi: 10.1038/s41380-022-01940-w. Epub 2023 Jan 6.

Abstract

ATP9A, a lipid flippase of the class II P4-ATPases, is involved in cellular vesicle trafficking. Its homozygous variants are linked to neurodevelopmental disorders in humans. However, its physiological function, the underlying mechanism as well as its pathophysiological relevance in humans and animals are still largely unknown. Here, we report two independent families in which the nonsense mutations c.433C>T/c.658C>T/c.983G>A (p. Arg145*/p. Arg220*/p. Trp328*) in ATP9A (NM_006045.3) cause autosomal recessive hypotonia, intellectual disability (ID) and attention deficit hyperactivity disorder (ADHD). Atp9a null mice show decreased muscle strength, memory deficits and hyperkinetic movement disorder, recapitulating the symptoms observed in patients. Abnormal neurite morphology and impaired synaptic transmission are found in the primary motor cortex and hippocampus of the Atp9a null mice. ATP9A is also required for maintaining neuronal neurite morphology and the viability of neural cells in vitro. It mainly localizes to endosomes and plays a pivotal role in endosomal recycling pathway by modulating small GTPase RAB5 and RAB11 activation. However, ATP9A pathogenic mutants have aberrant subcellular localization and cause abnormal endosomal recycling. These findings provide strong evidence that ATP9A deficiency leads to neurodevelopmental disorders and synaptic dysfunctions in both humans and mice, and establishes novel regulatory roles for ATP9A in RAB5 and RAB11 activity-dependent endosomal recycling pathway and neurological diseases.

摘要

ATP9A 是 II 类 P4-ATP 酶中的一种脂质翻转酶,参与细胞小泡运输。其纯合变体与人类神经发育障碍有关。然而,其生理功能、潜在机制及其在人类和动物中的病理生理学相关性仍知之甚少。在这里,我们报道了两个独立的家族,其中 ATP9A(NM_006045.3)中的无义突变 c.433C>T/c.658C>T/c.983G>A(p.Arg145*/p.Arg220*/p.Trp328*)导致常染色体隐性低张力、智力障碍(ID)和注意缺陷多动障碍(ADHD)。Atp9a 基因敲除小鼠表现出肌肉力量下降、记忆缺陷和多动运动障碍,重现了患者观察到的症状。在 Atp9a 基因敲除小鼠的初级运动皮层和海马体中发现了异常的神经突形态和受损的突触传递。ATP9A 还需要维持神经元神经突形态和体外神经细胞的活力。它主要定位于内体,并通过调节小 GTPase RAB5 和 RAB11 的激活在内体再循环途径中发挥关键作用。然而,ATP9A 致病突变体具有异常的亚细胞定位,并导致异常的内体再循环。这些发现为 ATP9A 缺乏导致人类和小鼠神经发育障碍和突触功能障碍提供了有力证据,并确立了 ATP9A 在 RAB5 和 RAB11 活性依赖性内体再循环途径和神经疾病中的新的调节作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d58/9816018/929832fae9dd/41380_2022_1940_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验