Suppr超能文献

端羟基聚丁二烯(HTPB)推进剂动态储能模量和松弛模量的数值转换方法

Numerical Conversion Method for the Dynamic Storage Modulus and Relaxation Modulus of Hydroxy-Terminated Polybutadiene (HTPB) Propellants.

作者信息

Ji Yongchao, Cao Liang, Li Zhuo, Chen Guoqing, Cao Peng, Liu Tong

机构信息

College of Science, Inner Mongolia University of Technology, Hohhot 010000, China.

College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China.

出版信息

Polymers (Basel). 2022 Dec 20;15(1):3. doi: 10.3390/polym15010003.

Abstract

As a typical viscoelastic material, solid propellants have a large difference in mechanical properties under static and dynamic loading. This variability is manifested in the difference in values of the relaxation modulus and dynamic modulus, which serve as the entry point for studying the dynamic and static mechanical properties of propellants. The relaxation modulus and dynamic modulus have a clear integral relationship in theory, but their consistency in engineering practice has never been verified. In this paper, by introducing the “catch-up factor λ” and “waiting factor γ”, a method for the inter-conversion of the dynamic storage modulus and relaxation modulus of HTPB propellant is established, and the consistency between them is verified. The results show that the time region of the calculated conversion values of the relaxation modulus obtained by this method covers 10−8−104 s, spanning twelve orders of magnitude. Compared to that of the relaxation modulus (10−4−104 s, spanning eight orders of magnitude), an expansion of four orders of magnitude is achieved. This enhances the expression ability of the relaxation modulus on the mechanical properties of the propellant. Furthermore, when the conversion method is applied to the dynamic−static modulus conversion of the other two HTPB propellants, the results show that the correlation coefficient between the calculated and measured conversion values is R2 > 0.933. This proves the applicability of this method to the dynamic−static modulus conversion of other types of HTPB propellants. It was also found that λ and γ have the same universal optimal value for different HTPB propellants. As a bridge for static and dynamic modulus conversion, this method greatly expands the expression ability of the relaxation modulus and dynamic storage modulus on the mechanical properties of the HTPB propellant, which is of great significance in the research into the mechanical properties of the propellant.

摘要

作为一种典型的粘弹性材料,固体推进剂在静态和动态载荷下的力学性能有很大差异。这种变异性体现在松弛模量和动态模量的值的差异上,这是研究推进剂动态和静态力学性能的切入点。松弛模量和动态模量在理论上有明确的积分关系,但它们在工程实践中的一致性从未得到验证。本文通过引入“追赶因子λ”和“等待因子γ”,建立了一种HTPB推进剂动态储能模量与松弛模量相互转换的方法,并验证了它们之间的一致性。结果表明,该方法得到的松弛模量计算转换值的时间区域覆盖10−8−104 s,跨越十二个数量级。与松弛模量(10−4−104 s,跨越八个数量级)相比,实现了四个数量级的扩展。这增强了松弛模量对推进剂力学性能的表达能力。此外,当将该转换方法应用于另外两种HTPB推进剂的动静模量转换时,结果表明计算转换值与测量转换值之间的相关系数为R2 > 0.933。这证明了该方法对其他类型HTPB推进剂动静模量转换的适用性。还发现,对于不同的HTPB推进剂,λ和γ具有相同的通用最优值。作为动静模量转换的桥梁,该方法极大地扩展了松弛模量和动态储能模量对HTPB推进剂力学性能的表达能力,这对推进剂力学性能的研究具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe48/9824529/6aab2acf7e4b/polymers-15-00003-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验