Suppr超能文献

神经建模在探索牛粪生物甲烷潜力中的应用:以波兰大波兰省、波德拉斯省和马佐夫舍省牛群结构为例的研究。

Neural Modelling in the Exploration of the Biomethane Potential from Cattle Manure: A Case Study on Herds Structure from Wielkopolskie, Podlaskie, and Mazowieckie Voivodeships in Poland.

机构信息

Department of Biosystems Engineering, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland.

出版信息

Sensors (Basel). 2022 Dec 23;23(1):164. doi: 10.3390/s23010164.

Abstract

In the presented study, data on the size and structure of cattle herds in Wielkopolskie, Podlaskie, and Mazowieckie voivodeships in 2019 were analyzed and subjected to modelling with the use of artificial intelligence, namely artificial neural networks (ANNs). The potential amount of biogas (m) from cattle manure and slurry for the analyzed provinces was as follows: for the Mazowieckie Voivodeship, 800,654,186 m; for the Podlaskie voivodeship, 662,655,274 m; and for the Wielkopolskie voivodeship, 657,571,373 m. Neural modelling was applied to find the relationship between the structure of the herds and the amount of generated slurry and manure (biomethane potential), as well as to indicate the most important animal types participating in biogas production. In each of the analyzed cases, the three-layer MLP perceptron with a single hidden layer proved to be the most optimal network structure. Sensitivity analysis of the generated models concerning herd structure showed a significant contribution of dairy cows to the methanogenic potential for both slurry and manure. The amount of slurry produced in the Mazowieckie and Wielkopolskie voivodeships was influenced in turn by heifers (both 6-12 and 12-18 months old) and bulls 12-24 months old, and in the Podlaskie voivodeship by calves and heifers 6-12 months old. As for manure, in addition to cows, bulls 12-24 months old and heifers 12-18 represented the main factor for Mazowieckie and Wielkopolskie voivodeships, and heifers (both 6-12 and 12-18 months old) for Podlaskie voivodeship.

摘要

在本研究中,分析了 2019 年大波兰省、波德拉斯省和马佐夫舍省牛群的规模和结构数据,并使用人工智能(即人工神经网络 (ANNs))对其进行建模。分析省份的牛粪和粪浆潜在沼气产量(m)如下:马佐夫舍省 800,654,186 m;波德拉谢省 662,655,274 m;大波兰省 657,571,373 m。神经建模用于发现牛群结构与产生的粪浆和粪便量(生物甲烷潜力)之间的关系,并指出参与沼气生产的最重要动物类型。在每种情况下,三层 MLP 感知器,带有单个隐藏层,被证明是最优化的网络结构。对生成模型的敏感性分析表明,奶牛对粪浆和粪便的产甲烷潜力有显著贡献。马佐夫舍省和大波兰省产生的粪浆量分别受到 6-12 个月和 12-18 个月龄的小母牛和 12-24 个月龄的公牛以及波德拉谢省的小牛和 6-12 个月龄的小母牛的影响。至于粪肥,除了奶牛外,12-24 个月龄的公牛和 12-18 个月龄的小母牛是马佐夫舍省和大波兰省的主要因素,而 6-12 个月龄和 12-18 个月龄的小母牛是波德拉谢省的主要因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49bf/9824757/08e3d15b070d/sensors-23-00164-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验