College of Computer Science & Engineering, Northwest Normal University, Lanzhou 730070, China.
Sensors (Basel). 2022 Dec 28;23(1):338. doi: 10.3390/s23010338.
Emotions significantly impact human physical and mental health, and, therefore, emotion recognition has been a popular research area in neuroscience, psychology, and medicine. In this paper, we preprocess the raw signals acquired by millimeter-wave radar to obtain high-quality heartbeat and respiration signals. Then, we propose a deep learning model incorporating a convolutional neural network and gated recurrent unit neural network in combination with human face expression images. The model achieves a recognition accuracy of 84.5% in person-dependent experiments and 74.25% in person-independent experiments. The experiments show that it outperforms a single deep learning model compared to traditional machine learning algorithms.
情绪显著影响人类身心健康,因此,情绪识别一直是神经科学、心理学和医学领域的热门研究领域。在本文中,我们对毫米波雷达采集的原始信号进行预处理,以获得高质量的心跳和呼吸信号。然后,我们提出了一种深度学习模型,该模型结合了卷积神经网络和门控循环单元神经网络以及人脸表情图像。在依赖于人的实验中,该模型的识别准确率达到 84.5%,在独立于人的实验中,识别准确率达到 74.25%。实验表明,与传统机器学习算法相比,该模型优于单一的深度学习模型。