Suppr超能文献

使用无线信号进行独立于个体的情感检测的深度学习框架。

Deep learning framework for subject-independent emotion detection using wireless signals.

作者信息

Khan Ahsan Noor, Ihalage Achintha Avin, Ma Yihan, Liu Baiyang, Liu Yujie, Hao Yang

机构信息

School of Electronic Engineering and Computer Science, Queen Mary University of London, London, United Kingdom.

出版信息

PLoS One. 2021 Feb 3;16(2):e0242946. doi: 10.1371/journal.pone.0242946. eCollection 2021.

Abstract

Emotion states recognition using wireless signals is an emerging area of research that has an impact on neuroscientific studies of human behaviour and well-being monitoring. Currently, standoff emotion detection is mostly reliant on the analysis of facial expressions and/or eye movements acquired from optical or video cameras. Meanwhile, although they have been widely accepted for recognizing human emotions from the multimodal data, machine learning approaches have been mostly restricted to subject dependent analyses which lack of generality. In this paper, we report an experimental study which collects heartbeat and breathing signals of 15 participants from radio frequency (RF) reflections off the body followed by novel noise filtering techniques. We propose a novel deep neural network (DNN) architecture based on the fusion of raw RF data and the processed RF signal for classifying and visualising various emotion states. The proposed model achieves high classification accuracy of 71.67% for independent subjects with 0.71, 0.72 and 0.71 precision, recall and F1-score values respectively. We have compared our results with those obtained from five different classical ML algorithms and it is established that deep learning offers a superior performance even with limited amount of raw RF and post processed time-sequence data. The deep learning model has also been validated by comparing our results with those from ECG signals. Our results indicate that using wireless signals for stand-by emotion state detection is a better alternative to other technologies with high accuracy and have much wider applications in future studies of behavioural sciences.

摘要

利用无线信号进行情绪状态识别是一个新兴的研究领域,对人类行为的神经科学研究和幸福感监测产生影响。目前,远距离情绪检测主要依赖于对从光学或视频摄像机获取的面部表情和/或眼球运动的分析。同时,尽管机器学习方法已被广泛用于从多模态数据中识别人类情绪,但大多局限于依赖个体的分析,缺乏普遍性。在本文中,我们报告了一项实验研究,该研究通过对人体射频(RF)反射收集15名参与者的心跳和呼吸信号,并采用了新颖的噪声过滤技术。我们提出了一种基于原始RF数据和处理后的RF信号融合的新型深度神经网络(DNN)架构,用于对各种情绪状态进行分类和可视化。所提出的模型在独立受试者上实现了71.67%的高分类准确率,精确率、召回率和F1分数值分别为0.71、0.72和0.71。我们将我们的结果与从五种不同的经典机器学习算法获得的结果进行了比较,结果表明,即使在原始RF数据和后处理时间序列数据量有限的情况下,深度学习也具有卓越的性能。通过将我们的结果与心电图信号的结果进行比较,深度学习模型也得到了验证。我们的结果表明,使用无线信号进行待机情绪状态检测是一种比其他技术更好的选择,具有高精度,并且在未来行为科学研究中有更广泛的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7086/7857608/af0ca73c9b52/pone.0242946.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验