Suppr超能文献

结构后测方法在结构方程模型中的应用。

A structural after measurement approach to structural equation modeling.

机构信息

Department of Data Analysis, Ghent University.

出版信息

Psychol Methods. 2024 Jun;29(3):561-588. doi: 10.1037/met0000503. Epub 2022 Nov 10.

Abstract

In structural equation modeling (SEM), the measurement and structural parts of the model are usually estimated simultaneously. In this article, we revisit the long-standing idea that we should first estimate the measurement part, and then estimate the structural part. We call this the "structural-after-measurement" (SAM) approach to SEM. We describe a formal framework for the SAM approach under settings where the latent variables and their indicators are continuous. We review earlier SAM methods and establish how they are specific instances of the SAM framework. Decoupled estimation for the measurement and structural parts using SAM possesses three key advantages over simultaneous estimation in standard SEM. First, estimates are more robust against local model misspecifications. Second, estimation routines are less vulnerable to convergence issues in small samples. Third, estimates exhibit smaller finite sample biases under correctly specified models. We propose two variants of the SAM approach. "Local" SAM expresses the mean vector and variance-covariance matrix of the latent variables as a function of the observed summary statistics and the parameters of the measurement model. "Global" SAM holds the parameters of the measurement part fixed while estimating the parameters of the structural part. Our framework includes two-step corrected standard errors, and permits computing both local and global fit measures. Nonetheless, the SAM approach is an estimation strategy, and should not be regarded as a model-building tool. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

摘要

在结构方程模型(SEM)中,模型的测量和结构部分通常是同时估计的。在本文中,我们重新审视了一个长期存在的观点,即我们应该首先估计测量部分,然后再估计结构部分。我们将这种方法称为 SEM 的“结构优先于测量”(SAM)方法。我们在潜在变量及其指标连续的情况下,为 SAM 方法描述了一个正式的框架。我们回顾了早期的 SAM 方法,并确定了它们如何成为 SAM 框架的具体实例。与标准 SEM 中的同时估计相比,使用 SAM 对测量和结构部分进行解耦估计具有三个关键优势。首先,估计对局部模型失配更稳健。其次,估计程序在小样本中不易受到收敛问题的影响。第三,在正确指定的模型下,估计值的有限样本偏差更小。我们提出了 SAM 方法的两种变体。“局部”SAM 将潜在变量的均值向量和方差协方差矩阵表示为观测摘要统计量和测量模型参数的函数。“全局”SAM 在估计结构部分的参数时固定测量部分的参数。我们的框架包括两步校正标准误差,并允许计算局部和全局拟合度量。尽管如此,SAM 方法是一种估计策略,不应被视为模型构建工具。(PsycInfo 数据库记录(c)2024 APA,保留所有权利)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验