Suppr超能文献

评估基于机器学习的青光眼检测的外部有效性。

Assessing the external validity of machine learning-based detection of glaucoma.

机构信息

Singapore Eye Research Institute, Singapore National Eye Centre, 20 College Road, The Academia, Level 6, Discovery Tower, Singapore, 169856, Singapore.

School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore.

出版信息

Sci Rep. 2023 Jan 11;13(1):558. doi: 10.1038/s41598-023-27783-1.

Abstract

Studies using machine learning (ML) approaches have reported high diagnostic accuracies for glaucoma detection. However, none assessed model performance across ethnicities. The aim of the study is to externally validate ML models for glaucoma detection from optical coherence tomography (OCT) data. We performed a prospective, cross-sectional study, where 514 Asians (257 glaucoma/257 controls) were enrolled to construct ML models for glaucoma detection, which was then tested on 356 Asians (183 glaucoma/173 controls) and 138 Caucasians (57 glaucoma/81 controls). We used the retinal nerve fibre layer (RNFL) thickness values produced by the compensation model, which is a multiple regression model fitted on healthy subjects that corrects the RNFL profile for anatomical factors and the original OCT data (measured) to build two classifiers, respectively. Both the ML models (area under the receiver operating [AUC] = 0.96 and accuracy = 92%) outperformed the measured data (AUC = 0.93; P < 0.001) for glaucoma detection in the Asian dataset. However, in the Caucasian dataset, the ML model trained with compensated data (AUC = 0.93 and accuracy = 84%) outperformed the ML model trained with original data (AUC = 0.83 and accuracy = 79%; P < 0.001) and measured data (AUC = 0.82; P < 0.001) for glaucoma detection. The performance with the ML model trained on measured data showed poor reproducibility across different datasets, whereas the performance of the compensated data was maintained. Care must be taken when ML models are applied to patient cohorts of different ethnicities.

摘要

使用机器学习 (ML) 方法的研究报告了用于青光眼检测的高诊断准确性。然而,没有一项研究评估了模型在不同种族中的表现。本研究的目的是从光学相干断层扫描 (OCT) 数据中对用于青光眼检测的 ML 模型进行外部验证。我们进行了一项前瞻性、横断面研究,共纳入 514 名亚洲人(257 名青光眼/257 名对照)构建用于青光眼检测的 ML 模型,然后在 356 名亚洲人(183 名青光眼/173 名对照)和 138 名高加索人(57 名青光眼/81 名对照)中进行测试。我们使用补偿模型产生的视网膜神经纤维层 (RNFL) 厚度值,该模型是一种多元回归模型,适用于健康受试者,用于校正 RNFL 图谱的解剖因素和原始 OCT 数据(测量值),分别构建两个分类器。在亚洲人群数据集中,用于青光眼检测的 ML 模型(接收者操作特征 [AUC] 下面积 = 0.96,准确率 = 92%)优于原始数据(AUC = 0.93;P < 0.001)。然而,在高加索人群数据集中,使用补偿数据训练的 ML 模型(AUC = 0.93,准确率 = 84%)优于使用原始数据训练的 ML 模型(AUC = 0.83,准确率 = 79%;P < 0.001)和用于青光眼检测的原始数据(AUC = 0.82;P < 0.001)。使用原始数据训练的 ML 模型在不同数据集之间的重现性较差,而补偿数据的性能则保持不变。当 ML 模型应用于不同种族的患者群体时,必须谨慎行事。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c9/9834286/cc81aef72a32/41598_2023_27783_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验