McCarthy Angela, Valenzuela Ives, Chen Royce W S, Dagi Glass Lora R, Thakoor Kaveri
Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York.
Department of Biomedical Engineering, Columbia University, New York, New York.
Ophthalmol Sci. 2025 Jun 9;5(6):100847. doi: 10.1016/j.xops.2025.100847. eCollection 2025 Nov-Dec.
OBJECTIVE: Recent advances in artificial intelligence (AI) are revolutionizing ophthalmology by enhancing diagnostic accuracy, treatment planning, and patient management. However, a significant gap remains in practical guidance for ophthalmologists who lack AI expertise to effectively analyze these technologies and assess their readiness for integration into clinical practice. This paper aims to bridge this gap by demystifying AI model design and providing practical recommendations for evaluating AI imaging models in research publications. DESIGN: Educational review: synthesizing key considerations for evaluating AI papers in ophthalmology. PARTICIPANTS: This paper draws on insights from an interdisciplinary team of ophthalmologists and AI experts with experience in developing and evaluating AI models for clinical applications. METHODS: A structured framework was developed based on expert discussions and a review of key methodological considerations in AI research. MAIN OUTCOME MEASURES: A stepwise approach to evaluating AI models in ophthalmology, providing clinicians with practical strategies for assessing AI research. RESULTS: This guide offers broad recommendations applicable across ophthalmology and medicine. CONCLUSIONS: As the landscape of health care continues to evolve, proactive engagement with AI will empower clinicians to lead the way in innovation while concurrently prioritizing patient safety and quality of care. FINANCIAL DISCLOSURES: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
目的:人工智能(AI)的最新进展正在通过提高诊断准确性、治疗规划和患者管理,彻底改变眼科医学。然而,对于缺乏人工智能专业知识的眼科医生来说,在有效分析这些技术并评估其融入临床实践的准备情况方面,实际指导仍存在重大差距。本文旨在通过揭开人工智能模型设计的神秘面纱,并为在研究出版物中评估人工智能成像模型提供实用建议,来弥合这一差距。 设计:教育综述:综合评估眼科人工智能论文的关键考虑因素。 参与者:本文借鉴了一个跨学科团队的见解,该团队由眼科医生和人工智能专家组成,他们在开发和评估用于临床应用的人工智能模型方面具有经验。 方法:基于专家讨论和对人工智能研究中关键方法学考虑因素的回顾,制定了一个结构化框架。 主要观察指标:一种评估眼科人工智能模型的逐步方法,为临床医生提供评估人工智能研究的实用策略。 结果:本指南提供了适用于整个眼科和医学领域的广泛建议。 结论:随着医疗保健格局的不断演变,积极参与人工智能将使临床医生能够引领创新,同时将患者安全和护理质量放在首位。 财务披露:在本文末尾的脚注和披露中可能会找到专有或商业披露信息。
Ophthalmol Sci. 2025-6-9
JBI Database System Rev Implement Rep. 2016-4
Health Technol Assess. 2001
J Med Internet Res. 2025-4-4
J Health Organ Manag. 2025-6-30
Cochrane Database Syst Rev. 2023-11-15
Ophthalmol Sci. 2024-1-18
JAMA Ophthalmol. 2024-4-1