文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

科学文献中人工智能成像模型评估实用指南。

A Practical Guide to Evaluating Artificial Intelligence Imaging Models in Scientific Literature.

作者信息

McCarthy Angela, Valenzuela Ives, Chen Royce W S, Dagi Glass Lora R, Thakoor Kaveri

机构信息

Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York.

Department of Biomedical Engineering, Columbia University, New York, New York.

出版信息

Ophthalmol Sci. 2025 Jun 9;5(6):100847. doi: 10.1016/j.xops.2025.100847. eCollection 2025 Nov-Dec.


DOI:10.1016/j.xops.2025.100847
PMID:40778360
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12329112/
Abstract

OBJECTIVE: Recent advances in artificial intelligence (AI) are revolutionizing ophthalmology by enhancing diagnostic accuracy, treatment planning, and patient management. However, a significant gap remains in practical guidance for ophthalmologists who lack AI expertise to effectively analyze these technologies and assess their readiness for integration into clinical practice. This paper aims to bridge this gap by demystifying AI model design and providing practical recommendations for evaluating AI imaging models in research publications. DESIGN: Educational review: synthesizing key considerations for evaluating AI papers in ophthalmology. PARTICIPANTS: This paper draws on insights from an interdisciplinary team of ophthalmologists and AI experts with experience in developing and evaluating AI models for clinical applications. METHODS: A structured framework was developed based on expert discussions and a review of key methodological considerations in AI research. MAIN OUTCOME MEASURES: A stepwise approach to evaluating AI models in ophthalmology, providing clinicians with practical strategies for assessing AI research. RESULTS: This guide offers broad recommendations applicable across ophthalmology and medicine. CONCLUSIONS: As the landscape of health care continues to evolve, proactive engagement with AI will empower clinicians to lead the way in innovation while concurrently prioritizing patient safety and quality of care. FINANCIAL DISCLOSURES: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

摘要

目的:人工智能(AI)的最新进展正在通过提高诊断准确性、治疗规划和患者管理,彻底改变眼科医学。然而,对于缺乏人工智能专业知识的眼科医生来说,在有效分析这些技术并评估其融入临床实践的准备情况方面,实际指导仍存在重大差距。本文旨在通过揭开人工智能模型设计的神秘面纱,并为在研究出版物中评估人工智能成像模型提供实用建议,来弥合这一差距。 设计:教育综述:综合评估眼科人工智能论文的关键考虑因素。 参与者:本文借鉴了一个跨学科团队的见解,该团队由眼科医生和人工智能专家组成,他们在开发和评估用于临床应用的人工智能模型方面具有经验。 方法:基于专家讨论和对人工智能研究中关键方法学考虑因素的回顾,制定了一个结构化框架。 主要观察指标:一种评估眼科人工智能模型的逐步方法,为临床医生提供评估人工智能研究的实用策略。 结果:本指南提供了适用于整个眼科和医学领域的广泛建议。 结论:随着医疗保健格局的不断演变,积极参与人工智能将使临床医生能够引领创新,同时将患者安全和护理质量放在首位。 财务披露:在本文末尾的脚注和披露中可能会找到专有或商业披露信息。

相似文献

[1]
A Practical Guide to Evaluating Artificial Intelligence Imaging Models in Scientific Literature.

Ophthalmol Sci. 2025-6-9

[2]
Health professionals' experience of teamwork education in acute hospital settings: a systematic review of qualitative literature.

JBI Database System Rev Implement Rep. 2016-4

[3]
Research status, hotspots and perspectives of artificial intelligence applied to pain management: a bibliometric and visual analysis.

Updates Surg. 2025-6-28

[4]
Stench of Errors or the Shine of Potential: The Challenge of (Ir)Responsible Use of ChatGPT in Speech-Language Pathology.

Int J Lang Commun Disord. 2025

[5]
Home treatment for mental health problems: a systematic review.

Health Technol Assess. 2001

[6]
AI for IMPACTS Framework for Evaluating the Long-Term Real-World Impacts of AI-Powered Clinician Tools: Systematic Review and Narrative Synthesis.

J Med Internet Res. 2025-2-5

[7]
The Role of AI in Nursing Education and Practice: Umbrella Review.

J Med Internet Res. 2025-4-4

[8]
Redefining Mentorship in Medical Education with Artificial Intelligence: A Delphi Study on the Feasibility and Implications.

Teach Learn Med. 2025-6-18

[9]
Accreditation through the eyes of nurse managers: an infinite staircase or a phenomenon that evaporates like water.

J Health Organ Manag. 2025-6-30

[10]
Artificial intelligence for detecting keratoconus.

Cochrane Database Syst Rev. 2023-11-15

本文引用的文献

[1]
Evaluating a Foundation Artificial Intelligence Model for Glaucoma Detection Using Color Fundus Photographs.

Ophthalmol Sci. 2024-9-14

[2]
AI-READI: rethinking AI data collection, preparation and sharing in diabetes research and beyond.

Nat Metab. 2024-12

[3]
Heatmap analysis for artificial intelligence explainability in diabetic retinopathy detection: illuminating the rationale of deep learning decisions.

Ann Transl Med. 2024-10-20

[4]
Barriers to Extracting and Harmonizing Glaucoma Testing Data: Gaps, Shortcomings, and the Pursuit of FAIRness.

Ophthalmol Sci. 2024-9-14

[5]
Advances and prospects of multi-modal ophthalmic artificial intelligence based on deep learning: a review.

Eye Vis (Lond). 2024-10-1

[6]
Special Commentary: Balancing Benefits and Risks: The Case for Retinal Images to Be Considered as Nonprotected Health Information for Research Purposes.

Ophthalmology. 2025-1

[7]
Enhancing automated strabismus classification with limited data: Data augmentation using StyleGAN2-ADA.

PLoS One. 2024

[8]
OCTDL: Optical Coherence Tomography Dataset for Image-Based Deep Learning Methods.

Sci Data. 2024-4-11

[9]
Transparency in Artificial Intelligence Reporting in Ophthalmology-A Scoping Review.

Ophthalmol Sci. 2024-1-18

[10]
Accuracy of an Artificial Intelligence Chatbot's Interpretation of Clinical Ophthalmic Images.

JAMA Ophthalmol. 2024-4-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索