Suppr超能文献

Eres-UNet++:基于高效通道注意力和Res-UNet+的肝脏CT图像分割

Eres-UNet++: Liver CT image segmentation based on high-efficiency channel attention and Res-UNet+.

作者信息

Li Jian, Liu Kongyu, Hu Yating, Zhang Hongchen, Heidari Ali Asghar, Chen Huiling, Zhang Weijiang, Algarni Abeer D, Elmannai Hela

机构信息

College of Information Technology, Jilin Agricultural University, Changchun, 130118, China.

Institute of Big Data and Information Technology, Wenzhou University, Wenzhou 325000, China.

出版信息

Comput Biol Med. 2023 May;158:106501. doi: 10.1016/j.compbiomed.2022.106501. Epub 2023 Jan 10.

Abstract

Computerized tomography (CT) is of great significance for the localization and diagnosis of liver cancer. Many scholars have recently applied deep learning methods to segment CT images of liver and liver tumors. Unlike natural images, medical image segmentation is usually more challenging due to its nature. Aiming at the problem of blurry boundaries and complex gradients of liver tumor images, a deep supervision network based on the combination of high-efficiency channel attention and Res-UNet++ (ECA residual UNet++) is proposed for liver CT image segmentation, enabling fully automated end-to-end segmentation of the network. In this paper, the UNet++ structure is selected as the baseline. The residual block feature encoder based on context awareness enhances the feature extraction ability and solves the problem of deep network degradation. The introduction of an efficient attention module combines the depth of the feature map with spatial information to alleviate the uneven sample distribution impact; Use DiceLoss to replace the cross-entropy loss function to optimize network parameters. The liver and liver tumor segmentation accuracy on the LITS dataset was 95.8% and 89.3%, respectively. The results show that compared with other algorithms, the method proposed in this paper achieves a good segmentation performance, which has specific reference significance for computer-assisted diagnosis and treatment to attain fine segmentation of liver and liver tumors.

摘要

计算机断层扫描(CT)对肝癌的定位和诊断具有重要意义。最近,许多学者将深度学习方法应用于肝脏和肝脏肿瘤CT图像的分割。与自然图像不同,医学图像分割因其自身性质通常更具挑战性。针对肝脏肿瘤图像边界模糊和梯度复杂的问题,提出了一种基于高效通道注意力和Res-UNet++(ECA残差UNet++)相结合的深度监督网络用于肝脏CT图像分割,实现网络的全自动端到端分割。本文选择UNet++结构作为基线。基于上下文感知的残差块特征编码器增强了特征提取能力,解决了深度网络退化问题。引入高效注意力模块将特征图的深度与空间信息相结合,以减轻样本分布不均衡的影响;使用DiceLoss代替交叉熵损失函数来优化网络参数。在LITS数据集上肝脏和肝脏肿瘤的分割准确率分别为95.8%和89.3%。结果表明,与其他算法相比,本文提出的方法具有良好的分割性能,对实现肝脏和肝脏肿瘤的精细分割的计算机辅助诊断和治疗具有一定的参考意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验