Suppr超能文献

CT 肝脏结构的语义分割:近期趋势的系统评价和文献计量分析 : 基于神经网络的肝脏语义分割方法。

Semantic Segmentation of CT Liver Structures: A Systematic Review of Recent Trends and Bibliometric Analysis : Neural Network-based Methods for Liver Semantic Segmentation.

机构信息

Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal.

Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal.

出版信息

J Med Syst. 2024 Oct 14;48(1):97. doi: 10.1007/s10916-024-02115-6.

Abstract

The use of artificial intelligence (AI) in the segmentation of liver structures in medical images has become a popular research focus in the past half-decade. The performance of AI tools in screening for this task may vary widely and has been tested in the literature in various datasets. However, no scientometric report has provided a systematic overview of this scientific area. This article presents a systematic and bibliometric review of recent advances in neuronal network modeling approaches, mainly of deep learning, to outline the multiple research directions of the field in terms of algorithmic features. Therefore, a detailed systematic review of the most relevant publications addressing fully automatic semantic segmenting liver structures in Computed Tomography (CT) images in terms of algorithm modeling objective, performance benchmark, and model complexity is provided. The review suggests that fully automatic hybrid 2D and 3D networks are the top performers in the semantic segmentation of the liver. In the case of liver tumor and vasculature segmentation, fully automatic generative approaches perform best. However, the reported performance benchmark indicates that there is still much to be improved in segmenting such small structures in high-resolution abdominal CT scans.

摘要

在过去的五年中,人工智能(AI)在医学图像中肝脏结构分割中的应用已成为热门研究焦点。AI 工具在这项任务中的表现可能存在很大差异,并且在各种数据集中的文献中进行了测试。但是,没有科学计量报告对该科学领域进行系统概述。本文对神经元网络建模方法的最新进展进行了系统和计量学回顾,主要是深度学习,以根据算法特征概述该领域的多个研究方向。因此,详细回顾了最相关的出版物,这些出版物针对计算机断层扫描(CT)图像中肝脏结构的全自动语义分割,从算法建模目标、性能基准和模型复杂性方面进行了讨论。综述表明,全自动混合 2D 和 3D 网络是肝脏语义分割的最佳性能者。在肝脏肿瘤和血管分割的情况下,全自动生成方法表现最佳。但是,报告的性能基准表明,在高分辨率腹部 CT 扫描中分割此类小结构仍有很大的改进空间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f82/11473507/8fe007c08449/10916_2024_2115_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验