Hansen Ingvild, Seedhouse Amanda E, Serrano Santiago, Nickl Andreas, Feng MengKe, Huang Jonathan Y, Tanttu Tuomo, Dumoulin Stuyck Nard, Lim Wee Han, Hudson Fay E, Itoh Kohei M, Saraiva Andre, Laucht Arne, Dzurak Andrew S, Yang Chih Hwan
School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW, Australia.
Diraq, Sydney, NSW, Australia.
Nat Commun. 2024 Sep 3;15(1):7656. doi: 10.1038/s41467-024-52010-4.
Semiconductor spin qubits represent a promising platform for future large-scale quantum computers owing to their excellent qubit performance, as well as the ability to leverage the mature semiconductor manufacturing industry for scaling up. Individual qubit control, however, commonly relies on spectral selectivity, where individual microwave signals of distinct frequencies are used to address each qubit. As quantum processors scale up, this approach will suffer from frequency crowding, control signal interference and unfeasible bandwidth requirements. Here, we propose a strategy based on arrays of degenerate spins coherently dressed by a global control field and individually addressed by local electrodes. We demonstrate simultaneous on-resonance driving of two degenerate qubits using a global field while retaining addressability for qubits with equal Larmor frequencies. Furthermore, we implement SWAP oscillations during on-resonance driving, constituting the demonstration of driven two-qubit gates. Significantly, our findings highlight how dressing can overcome the fragility of entangling gates between superposition states and increase their noise robustness. These results constitute a paradigm shift in qubit control in order to overcome frequency crowding in large-scale quantum computing.
由于其出色的量子比特性能,以及利用成熟的半导体制造业进行扩展的能力,半导体自旋量子比特代表了未来大规模量子计算机的一个有前景的平台。然而,单个量子比特的控制通常依赖于光谱选择性,即使用不同频率的单个微波信号来寻址每个量子比特。随着量子处理器规模的扩大,这种方法将面临频率拥挤、控制信号干扰和不可行的带宽要求。在这里,我们提出了一种基于简并自旋阵列的策略,该阵列由全局控制场进行相干修饰,并由局部电极进行单独寻址。我们展示了使用全局场同时对两个简并量子比特进行共振驱动,同时保持对具有相等拉莫尔频率的量子比特的可寻址性。此外,我们在共振驱动期间实现了SWAP振荡,构成了驱动双量子比特门的演示。重要的是,我们的发现突出了修饰如何能够克服叠加态之间纠缠门的脆弱性,并提高其噪声鲁棒性。这些结果构成了量子比特控制的范式转变,以克服大规模量子计算中的频率拥挤问题。