Suppr超能文献

基于随机游走的自监督对比学习在有限标注下的医学图像分割。

Self-supervised contrastive learning with random walks for medical image segmentation with limited annotations.

机构信息

Institute of Signal Processing and System Theory, University of Stuttgart, 70550 Stuttgart, Germany.

Max Planck Institute for Intelligent Systems, 72076 Tübingen, Germany.

出版信息

Comput Med Imaging Graph. 2023 Mar;104:102174. doi: 10.1016/j.compmedimag.2022.102174. Epub 2023 Jan 9.

Abstract

Medical image segmentation has seen significant progress through the use of supervised deep learning. Hereby, large annotated datasets were employed to reliably segment anatomical structures. To reduce the requirement for annotated training data, self-supervised pre-training strategies on non-annotated data were designed. Especially contrastive learning schemes operating on dense pixel-wise representations have been introduced as an effective tool. In this work, we expand on this strategy and leverage inherent anatomical similarities in medical imaging data. We apply our approach to the task of semantic segmentation in a semi-supervised setting with limited amounts of annotated volumes. Trained alongside a segmentation loss in one single training stage, a contrastive loss aids to differentiate between salient anatomical regions that conform to the available annotations. Our approach builds upon the work of Jabri et al. (2020), who proposed cyclical contrastive random walks (CCRW) for self-supervision on palindromes of video frames. We adapt this scheme to operate on entries of paired embedded image slices. Using paths of cyclical random walks bypasses the need for negative samples, as commonly used in contrastive approaches, enabling the algorithm to discriminate among relevant salient (anatomical) regions implicitly. Further, a multi-level supervision strategy is employed, ensuring adequate representations of local and global characteristics of anatomical structures. The effectiveness of reducing the amount of required annotations is shown on three MRI datasets. A median increase of 8.01 and 5.90 pp in the Dice Similarity Coefficient (DSC) compared to our baseline could be achieved across all three datasets in the case of one and two available annotated examples per dataset.

摘要

医学图像分割在使用监督深度学习方面取得了重大进展。在此基础上,使用了大型标注数据集来可靠地分割解剖结构。为了减少对标注训练数据的需求,设计了针对非标注数据的自监督预训练策略。特别是基于密集像素表示的对比学习方案已被引入作为一种有效工具。在这项工作中,我们扩展了这一策略,并利用医学成像数据中的固有解剖相似性。我们将我们的方法应用于具有有限数量标注体的半监督语义分割任务中。在单个训练阶段中,与分割损失一起训练的对比损失有助于区分符合可用标注的显著解剖区域。我们的方法基于 Jabri 等人(2020 年)的工作,他们提出了循环对比随机游走(CCRW)用于视频帧回文的自监督。我们将此方案改编为操作对嵌入图像切片的配对条目。使用循环随机游走的路径避免了在对比方法中常用的负样本的需要,从而使算法能够隐式区分相关显著(解剖)区域。此外,还采用了多级监督策略,以确保对解剖结构的局部和全局特征进行充分表示。在三个 MRI 数据集上证明了减少所需标注数量的有效性。在每个数据集有一个和两个可用标注示例的情况下,与基线相比,在所有三个数据集上的 Dice 相似系数(DSC)分别平均增加了 8.01 和 5.90 个百分点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验