Qayyum Abdul, Razzak Imran, Mazher Moona, Khan Tariq, Ding Weiping, Niederer Steven
IEEE J Biomed Health Inform. 2023 Dec 12;PP. doi: 10.1109/JBHI.2023.3340956.
The availability of large, high-quality annotated datasets in the medical domain poses a substantial challenge in segmentation tasks. To mitigate the reliance on annotated training data, self-supervised pre-training strategies have emerged, particularly employing contrastive learning methods on dense pixel-level representations. In this work, we proposed to capitalize on intrinsic anatomical similarities within medical image data and develop a semantic segmentation framework through a self-supervised fusion network, where the availability of annotated volumes is limited. In a unified training phase, we combine segmentation loss with contrastive loss, enhancing the distinction between significant anatomical regions that adhere to the available annotations. To further improve the segmentation performance, we introduce an efficient parallel transformer module that leverages Multiview multiscale feature fusion and depth-wise features. The proposed transformer architecture, based on multiple encoders, is trained in a self-supervised manner using contrastive loss. Initially, the transformer is trained using an unlabeled dataset. We then fine-tune one encoder using data from the first stage and another encoder using a small set of annotated segmentation masks. These encoder features are subsequently concatenated for the purpose of brain tumor segmentation. The multiencoder-based transformer model yields significantly better outcomes across three medical image segmentation tasks. We validated our proposed solution by fusing images across diverse medical image segmentation challenge datasets, demonstrating its efficacy by outperforming state-of-the-art methodologies.
在医学领域中,大规模高质量标注数据集的可用性在分割任务中带来了重大挑战。为了减轻对标注训练数据的依赖,出现了自监督预训练策略,特别是在密集像素级表示上采用对比学习方法。在这项工作中,我们建议利用医学图像数据中的内在解剖相似性,并通过自监督融合网络开发一个语义分割框架,其中标注体积的可用性有限。在统一的训练阶段,我们将分割损失与对比损失相结合,增强了与可用标注相符的重要解剖区域之间的区分。为了进一步提高分割性能,我们引入了一个高效的并行变压器模块,该模块利用多视图多尺度特征融合和深度特征。所提出的基于多个编码器的变压器架构使用对比损失以自监督方式进行训练。最初,使用未标记数据集训练变压器。然后,我们使用第一阶段的数据微调一个编码器,并使用一小部分标注分割掩码微调另一个编码器。随后将这些编码器特征连接起来用于脑肿瘤分割。基于多编码器的变压器模型在三个医学图像分割任务中产生了明显更好的结果。我们通过融合来自不同医学图像分割挑战数据集的图像验证了我们提出的解决方案,通过优于现有方法证明了其有效性。