Suppr超能文献

下一代基于硅的串联太阳能电池的潜在顶电池。

Possible top cells for next-generation Si-based tandem solar cells.

作者信息

Lu Shuaicheng, Chen Chao, Tang Jiang

机构信息

Sargent Joint Research Center, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.

出版信息

Front Optoelectron. 2020 Sep;13(3):246-255. doi: 10.1007/s12200-020-1050-y. Epub 2020 Jul 20.

Abstract

Si-based solar cells, which have the advantages of high efficiency, low manufacturing costs, and outstanding stability, are dominant in the photovoltaic market. Currently, state-of-the-art Si-based solar cells are approaching the practical limit of efficiency. Constructing Si-based tandem solar cells is one available pathway to break the theoretical efficiency limit of single-junction silicon solar cells. Various top cells have been explored recently in the construction of Si-based tandem devices. Nevertheless, many challenges still stand in the way of extensive commercial application of Si-based tandem solar cells. Herein, we summarize the recent progress of representative Si-based tandem solar cells with different top cells, such as III-V solar cells, wide-bandgap perovskite solar cells, cadmium telluride (CdTe)-related solar cells, Cu(In,Ga)(Se,S) (CIGS)-related solar cells, and amorphous silicon (a-Si) solar cells, and we analyze the main bottlenecks for their next steps of development. Subsequently, we suggest several potential candidate top cells for Si-based tandem devices, such as SbS, Se, CdSe, and CuO. These materials have great potential for the development of high-performance and low-cost Si-based tandem solar cells in the future.

摘要

硅基太阳能电池具有高效率、低制造成本和出色稳定性等优点,在光伏市场中占据主导地位。目前,最先进的硅基太阳能电池正接近效率的实际极限。构建硅基串联太阳能电池是突破单结硅太阳能电池理论效率极限的一条可行途径。最近在硅基串联器件的构建中探索了各种顶电池。然而,许多挑战仍然阻碍着硅基串联太阳能电池的广泛商业应用。在此,我们总结了具有不同顶电池的代表性硅基串联太阳能电池的最新进展,如III-V族太阳能电池、宽带隙钙钛矿太阳能电池、碲化镉(CdTe)相关太阳能电池、铜铟镓硒(CIGS)相关太阳能电池和非晶硅(a-Si)太阳能电池,并分析了它们下一步发展的主要瓶颈。随后,我们提出了几种硅基串联器件的潜在候选顶电池,如硫化锑、硒、硒化镉和氧化铜。这些材料在未来高性能、低成本硅基串联太阳能电池的发展中具有巨大潜力。

相似文献

1
Possible top cells for next-generation Si-based tandem solar cells.
Front Optoelectron. 2020 Sep;13(3):246-255. doi: 10.1007/s12200-020-1050-y. Epub 2020 Jul 20.
2
Multilayer Transparent Top Electrode for Solution Processed Perovskite/Cu(In,Ga)(Se,S)2 Four Terminal Tandem Solar Cells.
ACS Nano. 2015 Jul 28;9(7):7714-21. doi: 10.1021/acsnano.5b03189. Epub 2015 Jun 26.
3
Perovskite-a Perfect Top Cell for Tandem Devices to Break the S-Q Limit.
Adv Sci (Weinh). 2019 Jan 30;6(7):1801704. doi: 10.1002/advs.201801704. eCollection 2019 Apr 3.
4
Theoretical study of highly efficient all-inorganic SbS-on-Si monolithically integrated (2-T) and mechanically stacked (4-T) tandem solar cells using SCAPS-1D.
Environ Sci Pollut Res Int. 2023 Sep;30(44):98747-98759. doi: 10.1007/s11356-023-25292-2. Epub 2023 Jan 19.
5
Single-graded CIGS with narrow bandgap for tandem solar cells.
Sci Technol Adv Mater. 2018 Mar 16;19(1):263-270. doi: 10.1080/14686996.2018.1444317. eCollection 2018.
6
Recent Progress in Developing Monolithic Perovskite/Si Tandem Solar Cells.
Front Chem. 2020 Dec 22;8:603375. doi: 10.3389/fchem.2020.603375. eCollection 2020.
7
Investigations aimed at producing 33% efficient perovskite-silicon tandem solar cells through device simulations.
RSC Adv. 2021 Nov 19;11(59):37366-37374. doi: 10.1039/d1ra06250f. eCollection 2021 Nov 17.
8
Combined Optical-Electrical Optimization of CdZnTe/Silicon Tandem Solar Cells.
Materials (Basel). 2020 Apr 15;13(8):1860. doi: 10.3390/ma13081860.
9
Light Management: A Key Concept in High-Efficiency Perovskite/Silicon Tandem Photovoltaics.
J Phys Chem Lett. 2019 Jun 6;10(11):3159-3170. doi: 10.1021/acs.jpclett.8b03721. Epub 2019 May 28.
10
Recent Progress of Wide Bandgap Perovskites towards Two-Terminal Perovskite/Silicon Tandem Solar Cells.
Nanomaterials (Basel). 2024 Jan 16;14(2):202. doi: 10.3390/nano14020202.

引用本文的文献

3
Scrutinizing transport phenomena and recombination mechanisms in thin film SbS solar cells.
Sci Rep. 2024 May 30;14(1):12460. doi: 10.1038/s41598-024-56041-1.
4
Exploring the impact of defect energy levels in CdTe/Si dual-junction solar cells using wxAMPS.
Sci Rep. 2024 Feb 27;14(1):4804. doi: 10.1038/s41598-024-55616-2.
5
Halide perovskites: from materials to optoelectronic devices.
Front Optoelectron. 2020 Sep;13(3):191-192. doi: 10.1007/s12200-020-1092-1. Epub 2020 Sep 21.
6
Rapid thermal evaporation for cadmium selenide thin-film solar cells.
Front Optoelectron. 2021 Dec;14(4):482-490. doi: 10.1007/s12200-021-1217-1. Epub 2021 May 12.

本文引用的文献

1
Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon.
Science. 2020 Mar 6;367(6482):1135-1140. doi: 10.1126/science.aaz3691.
2
Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems.
Science. 2020 Mar 6;367(6482):1097-1104. doi: 10.1126/science.aaz5074.
5
Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene).
Nature. 2019 Mar;567(7749):511-515. doi: 10.1038/s41586-019-1036-3. Epub 2019 Mar 27.
6
Progress and Perspectives of Thin Film Kesterite Photovoltaic Technology: A Critical Review.
Adv Mater. 2019 Apr;31(16):e1806692. doi: 10.1002/adma.201806692. Epub 2019 Feb 14.
7
Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency.
Nat Mater. 2018 Sep;17(9):820-826. doi: 10.1038/s41563-018-0115-4. Epub 2018 Jun 11.
10
Photovoltaic materials: Present efficiencies and future challenges.
Science. 2016 Apr 15;352(6283):aad4424. doi: 10.1126/science.aad4424.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验