Todorov Teodor K, Singh Saurabh, Bishop Douglas M, Gunawan Oki, Lee Yun Seog, Gershon Talia S, Brew Kevin W, Antunez Priscilla D, Haight Richard
IBM Thomas J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY, 10598, USA.
Nat Commun. 2017 Sep 25;8(1):682. doi: 10.1038/s41467-017-00582-9.
Selenium was used in the first solid state solar cell in 1883 and gave early insights into the photoelectric effect that inspired Einstein's Nobel Prize work; however, the latest efficiency milestone of 5.0% was more than 30 years ago. The recent surge of interest towards high-band gap absorbers for tandem applications led us to reconsider this attractive 1.95 eV material. Here, we show completely redesigned selenium devices with improved back and front interfaces optimized through combinatorial studies and demonstrate record open-circuit voltage (V ) of 970 mV and efficiency of 6.5% under 1 Sun. In addition, Se devices are air-stable, non-toxic, and extremely simple to fabricate. The absorber layer is only 100 nm thick, and can be processed at 200 ˚C, allowing temperature compatibility with most bottom substrates or sub-cells. We analyze device limitations and find significant potential for further improvement making selenium an attractive high-band-gap absorber for multi-junction device applications.Wide band gap semiconductors are important for the development of tandem photovoltaics. By introducing buffer layers at the front and rear side of solar cells based on selenium; Todorov et al., reduce interface recombination losses to achieve photoconversion efficiencies of 6.5%.
1883年,硒被用于首个固态太阳能电池中,并为光电效应提供了早期见解,这启发了爱因斯坦的诺贝尔奖获奖研究;然而,最近一次效率达到5.0%的里程碑已经是30多年前的事了。近期,人们对用于串联应用的高带隙吸收体兴趣激增,这促使我们重新审视这种具有吸引力的1.95电子伏特材料。在此,我们展示了经过完全重新设计的硒基器件,其通过组合研究优化了前后界面,并在1个太阳光照下展示了创纪录的970毫伏开路电压(V)和6.5%的效率。此外,硒基器件对空气稳定、无毒且制造极其简单。吸收层仅100纳米厚,可在200℃下进行处理,能与大多数底部衬底或子电池实现温度兼容。我们分析了器件的局限性,发现其具有进一步提升的巨大潜力,这使得硒成为用于多结器件应用的极具吸引力的高带隙吸收体。宽带隙半导体对于串联光伏的发展至关重要。通过在基于硒的太阳能电池的前后侧引入缓冲层,托多罗夫等人降低了界面复合损耗,从而实现了6.5%的光转换效率。