Suppr超能文献

氢气增强非晶碳向石墨烯的催化转化以实现超润滑。

Hydrogen-Enhanced Catalytic Conversion of Amorphous Carbon to Graphene for Achieving Superlubricity.

机构信息

State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, China.

Institute of Superlubricity Technology, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518057, China.

出版信息

Small. 2023 Mar;19(10):e2206580. doi: 10.1002/smll.202206580. Epub 2023 Jan 15.

Abstract

The solid-state conversion of amorphous carbon into graphene is extremely difficult, but it can be achieved in the friction experiments that induce macroscale superlubricity. However, the underlying conversion mechanisms remain elusive. Here, the friction experiments with Cu nanoparticles and (non-hydrogen (H) or H) a-C in vacuum, show the H-induced conversion of mechanical to chemical wear, resulting in the a-C's tribosoftening and nanofragmentating that produce hydrocarbon nanoclusters or molecules. It is such exactly hydrocarbon species that yield graphene at hydrogen-rich a-C friction interface, through reaction of them with Cu nanoparticles. In comparison, graphene isn't formed at Cu/non-H a-C friction interface. Atomistic simulations reveal the hydrogen-enhanced tribochemical decomposition of a-C and demonstrate the energetically favorable graphitization transformation of hydrocarbons on Cu substrates. The findings are of importance to achieve solid-state transformation between different carbon allotropes and provide a good strategy to synthesize other graphitic encapsulated catalysts with doped elements.

摘要

无定形碳向石墨烯的固态转化极其困难,但在诱导宏观超滑的摩擦实验中可以实现。然而,其潜在的转化机制仍难以捉摸。在这里,在真空中进行的 Cu 纳米颗粒和(非氢(H)或 H)a-C 的摩擦实验表明,H 诱导的机械向化学磨损的转化导致 a-C 的摩擦软化和纳米碎裂,从而产生碳氢纳米团簇或分子。正是这些碳氢物种在富氢 a-C 摩擦界面与 Cu 纳米颗粒反应生成石墨烯。相比之下,在 Cu/非 H a-C 摩擦界面不会形成石墨烯。原子模拟揭示了氢增强的摩擦化学分解 a-C,并证明了碳氢化合物在 Cu 衬底上的石墨化转化具有能量优势。这些发现对于实现不同碳同素异形体之间的固态转变具有重要意义,并为合成具有掺杂元素的其他石墨封装催化剂提供了一种很好的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验