Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China.
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, P. R. China.
Small. 2023 Mar;19(11):e2207044. doi: 10.1002/smll.202207044. Epub 2023 Jan 15.
Precise design of low-cost, efficient and definite electrocatalysts is the key to sustainable renewable energy. Herein, this work develops a targeted-anchored and subsequent spontaneous-redox strategy to synthesize nickel-iron layered double hydroxide (LDH) nanosheets anchored with monodispersed platinum (Pt) sites (Pt@LDH). Intermediate metal-organic frameworks (MOF)/LDH heterostructure not only provides numerous confine points to guarantee the stability of Pt sites, but also excites the spontaneous reduction for Pt . Electronic structure, charge transfer ability and reaction kinetics of Pt@LDH can be effectively facilitated by the monodispersed Pt moieties. As a result, the optimized Pt@LDH that with the 5% ultra-low content Pt exhibits the significant increment in electrochemical water splitting performance in alkaline media, which only afford low overpotentials of 58 mV at 10 mA cm for hydrogen evolution reaction (HER) and 239 mV at 10 mA cm for oxygen evolution reaction (OER), respectively. In a real device, Pt@LDH can drive an overall water-splitting at low cell voltage of 1.49 V at 10 mA cm , which can be superior to most reported similar LDH-based catalysts. Moreover, the versatility of the method is extended to other MOF precursors and noble metals for the design of ultrathin LDH supported monodispersed noble metal electrocatalysts promoting research interest in material design.
精准设计低成本、高效率且明确的电催化剂是可持续可再生能源的关键。在此,本工作开发了一种靶向锚定和后续自发氧化还原策略,用于合成负载单分散铂(Pt)位的镍铁层状双氢氧化物(LDH)纳米片(Pt@LDH)。中间金属有机骨架(MOF)/LDH 杂化物不仅提供了众多限制点以保证 Pt 位的稳定性,而且还激发了 Pt 的自发还原。Pt@LDH 中的单分散 Pt 部分可以有效促进电子结构、电荷转移能力和反应动力学。结果,优化后的 Pt@LDH 在碱性介质中具有 5%超低 Pt 含量,在析氢反应(HER)中仅提供 58 mV 的低过电势(10 mA cm),在析氧反应(OER)中仅提供 239 mV 的低过电势(10 mA cm)。在实际装置中,Pt@LDH 可以在低至 1.49 V 的电池电压下驱动整体水分解,在 10 mA cm 时的电流密度下,其性能优于大多数报道的类似 LDH 基催化剂。此外,该方法的多功能性扩展到其他 MOF 前体和贵金属,用于设计负载单分散贵金属的超薄 LDH 电催化剂,这激发了对材料设计的研究兴趣。