Wang Ying, Wang Shuo, Ma Ze-Lin, Yan Li-Ting, Zhao Xue-Bo, Xue Ying-Ying, Huo Jia-Min, Yuan Xiao, Li Shu-Ni, Zhai Quan-Guo
Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China.
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China.
Adv Mater. 2022 Mar;34(12):e2107488. doi: 10.1002/adma.202107488. Epub 2022 Feb 7.
Rational exploration of efficient, inexpensive, and robust electrocatalysts is critical for the efficient water splitting. Conjugated conductive metal-organic frameworks (cMOFs) with multicomponent layered double hydroxides (LDHs) to construct bifunctional heterostructure catalysts are considered as an efficient but complicated strategy. Here, the fabrication of a cMOF/LDH hetero-nanotree array catalyst (CoNiRu-NT) coupled with monodispersed ruthenium (Ru) sites via a controllable grafted-growth strategy is reported. Rich-amino hexaiminotriphenylene linkers coordinate with the LDH nanotrunk to form cMOF nanobranches, providing numerous anchoring sites to precisely confine and stabilize RuN sites. Moreover, monodispersed and reduced Ru moieties facilitate H O adsorption and dissociation, and the heterointerface between the cMOF and the LDH further modifies the chemical and electronic structures. Optimized CoNiRu-NT displays a significant increase in electrochemical water-splitting properties in alkaline media, affording low overpotentials of 22 mV at 10 mA cm and 255 mV at 20 mA cm for the hydrogen evolution reaction and oxygen evolution reaction, respectively. In an actual electrochemical system, CoNiRu-NT drives an overall water splitting at a low cell voltage of 1.47 V to reach 10 mA cm . This performance is comparable to that of pure noble-metal-based materials and superior to most reported MOF-based catalysts.
合理探索高效、廉价且稳定的电催化剂对于高效水分解至关重要。将共轭导电金属有机框架(cMOF)与多组分层状双氢氧化物(LDH)构建双功能异质结构催化剂被认为是一种有效但复杂的策略。在此,报道了一种通过可控接枝生长策略制备的与单分散钌(Ru)位点耦合的cMOF/LDH异质纳米树阵列催化剂(CoNiRu-NT)。富含氨基的六亚氨基三亚苯基连接体与LDH纳米主干配位形成cMOF纳米分支,提供大量锚定位点以精确限制和稳定RuN位点。此外,单分散且还原的Ru部分促进H₂O吸附和解离,并且cMOF与LDH之间的异质界面进一步修饰了化学和电子结构。优化后的CoNiRu-NT在碱性介质中的电化学水分解性能显著提高,在析氢反应和析氧反应中,在10 mA cm⁻²时的过电位分别为22 mV,在20 mA cm⁻²时为255 mV。在实际电化学系统中,CoNiRu-NT在1.47 V的低电池电压下驱动整体水分解达到10 mA cm⁻²。该性能与纯贵金属基材料相当,且优于大多数已报道的基于MOF的催化剂。